·
REVIEW
·

Engineering strategies and biomedical applications of bacterial extracellular vesicles

Xuying Liang1# Qianbei Li1# Lei Zheng1* Bo Situ1*
Show Less
1 Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
BMT 2025 , 6(3), 265–280; https://doi.org/10.12336/bmt.24.00032
Submitted: 7 June 2024 | Revised: 27 July 2024 | Accepted: 5 September 2024 | Published: 22 September 2025
Copyright © 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Bacterial extracellular vesicles (BEVs) are emerging as promising therapeutic agents and drug delivery vehicles due to their unique properties. These nanoscale vesicles possess stable membrane structure and naturally encapsulate a variety of bioactive molecules, making them versatile tools in biomedical applications. However, clinical translation of BEVs faces challenges such as insufficient display of disease-specific antigens, excessive toxicity, and rapid clearance. Addressing these issues is crucial for the clinical translation of BEVs. In this review, we discuss recent advances in BEV engineering strategies aimed at addressing these limitations and expanding their therapeutic applications. We highlight approaches for loading exogenous cargo into BEVs, detoxification strategies, and the latest progress in the application of engineered BEVs for treating infectious diseases, cancer, and other disorders. Despite promising preclinical results, clinical translation is hindered by safety concerns, standardisation difficulties, and scalability issues. Future research should focus on optimising detoxification processes, establishing global standardisation, and improving production methods to facilitate successful clinical translation of engineered BEVs. This review provides insights into the current status and future perspectives of BEV engineering for therapeutic applications.

Keywords
Bacterial extracellular vesicles
Disease treatment
Engineering
Vaccine
Funding
This work was supported by Guangdong Natural Science Fund for Distinguished Young Scholars (No. 2023B1515020058); the National Natural Science Foundation of China (No. 82272438); the Outstanding Youths Development Scheme of Nanfang Hospital, Southern Medical University (No. 2022J001); Science and Technology Projects in Guangzhou (No. 2024A04J9987); the Open Research Funds from the Qingyuan People’s Hospital, Guangzhou Medical University (No. 202301-202).
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

  1. Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol. 2019;17:13-24. doi: 10.1038/s41579-018-0112-2

 

  1. Shen Y, Giardino Torchia ML, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe. 2012;12:509-520. doi: 10.1016/j.chom.2012.08.004

 

  1. Balhuizen MD, Versluis CM, Van Grondelle MO, Veldhuizen EJA, Haagsman HP. Modulation of outer membrane vesicle-based immune responses by cathelicidins. Vaccine. 2022;40:2399-2408. doi: 10.1016/j.vaccine.2022.03.015

 

  1. Semchenko EA, Tan A, Borrow R, Seib KL. The Serogroup B meningococcal vaccine bexsero elicits antibodies to Neisseria gonorrhoeae. Clin Infect Dis. 2019;69:1101-1111. doi: 10.1093/cid/ciy1061

 

  1. Petousis-Harris H, Paynter J, Morgan J, et al. Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: A retrospective case-control study. Lancet. 2017;390:1603-1610. doi: 10.1016/S0140-6736(17)31449-6

 

  1. Kim OY, Park HT, Dinh NTH, et al. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nat Commun. 2017;8:626. doi: 10.1038/s41467-017-00729-8

 

  1. Li Y, Zhao R, Cheng K, et al. Bacterial outer membrane vesicles presenting programmed death 1 for improved cancer immunotherapy via immune activation and checkpoint inhibition. ACS Nano. 2020;14:16698-16711. doi: 10.1021/acsnano.0c03776

 

  1. Hua L, Yang Z, Li W, et al. A novel immunomodulator delivery platform based on bacterial biomimetic vesicles for enhanced antitumor immunity. Adv Mater. 2021;33:e2103923. doi: 10.1002/adma.202103923

 

  1. Simpson BW, Trent MS. Pushing the envelope: LPS modifications and their consequences. Nat Rev Microbiol. 2019;17:403-416. doi: 10.1038/s41579-019-0201-x

 

  1. Deo P, Chow SH, Hay ID, et al. Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis. PLoS Pathog. 2018;14:e1006945. doi: 10.1371/journal.ppat.1006945

 

  1. Qing S, Lyu C, Zhu L, et al. Biomineralized bacterial outer membrane vesicles potentiate safe and efficient tumor microenvironment reprogramming for anticancer therapy. Adv Mater. 2020;32:e2002085. doi: 10.1002/adma.202002085

 

  1. Roier S, Zingl FG, Cakar F, et al. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nat Commun. 2016;7:10515. doi: 10.1038/ncomms10515

 

  1. Guerrero-Mandujano A, Hernández-Cortez C, Ibarra JA, Castro- Escarpulli G. The outer membrane vesicles: secretion system type zero. Traffic. 2017 18 425-432.

 

  1. Baeza N, Delgado L, Comas J, Mercade E. Phage-mediated explosive cell lysis induces the formation of a different type of O-IMV in Shewanella vesiculosa M7(T). Front Microbiol. 2021;12:713669. doi: 10.3389/fmicb.2021.713669

 

  1. Pérez-Cruz C, Delgado L, López-Iglesias C, Mercade E. Outer-inner membrane vesicles naturally secreted by gram-negative pathogenic bacteria. PLoS One. 2015;10:e0116896. doi: 10.1371/journal.pone.0116896

 

  1. Toyofuku M, Cárcamo-Oyarce G, Yamamoto T, et al. Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis. Nat Commun. 2017;8:481. doi: 10.1038/s41467-017-00492-w

 

  1. Domingues S, Nielsen KM. Membrane vesicles and horizontal gene transfer in prokaryotes. Curr Opin Microbiol. 2017;38:16-21. doi: 10.1016/j.mib.2017.03.012

 

  1. Tashiro Y, Hasegawa Y, Shintani M, et al. Interaction of bacterial membrane vesicles with specific species and their potential for delivery to target cells. Front Microbiol. 2017;8:571. doi: 10.3389/fmicb.2017.00571

 

  1. Tzipilevich E, Habusha M, Ben-Yehuda S. Acquisition of phage sensitivity by bacteria through exchange of phage receptors. Cell. 2017;168:186-199.e12. doi: 10.1016/j.cell.2016.12.003

 

  1. Mashburn LM, Whiteley M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature. 2005;437:422-425. doi: 10.1038/nature03925

 

  1. Mehanny M, Koch M, Lehr CM, Fuhrmann G. Streptococcal extracellular membrane vesicles are rapidly internalized by immune cells and alter their cytokine release. Front Immunol. 2020;11:80. doi: 10.3389/fimmu.2020.00080

 

  1. Diaz-Garrido N, Badia J, Baldomà L. Modulation of dendritic cells by microbiota extracellular vesicles influences the cytokine profile and exosome cargo. Nutrients. 2022;14:344.doi: 10.3390/nu14020344

 

  1. Gujrati V, Prakash J, Malekzadeh-Najafabadi J, et al. Bioengineered bacterial vesicles as biological nano-heaters for optoacoustic imaging. Nat Commun. 2019;10:1114. doi: 10.1038/s41467-019-09034-y

 

  1. Pan J, Li X, Shao B, et al. Self-blockade of PD-L1 with bacteria-derived outer-membrane vesicle for enhanced cancer immunotherapy. Adv Mater. 2022;34:e2106307. doi: 10.1002/adma.202106307

 

  1. Carvalho AL, Fonseca S, Miquel-Clopés A, et al. Bioengineering commensal bacteria-derived outer membrane vesicles for delivery of biologics to the gastrointestinal and respiratory tract. J Extracell Vesicles. 2019;8:1632100.

 

  1. Peng LH, Wang MZ, Chu Y, et al. Engineering bacterial outer membrane vesicles as transdermal nanoplatforms for photo-TRAIL-programmed therapy against melanoma. Sci Adv. 2020;6:eaba2735. doi: 10.1126/sciadv.aba2735

 

  1. Stevenson TC, Cywes-Bentley C, Moeller TD, et al. Immunization with outer membrane vesicles displaying conserved surface polysaccharide antigen elicits broadly antimicrobial antibodies. Proc Natl Acad Sci U S A. 2018;115:E3106-E3115. doi: 10.1073/pnas.1718341115

 

  1. Huang W, Shu C, Hua L, et al. Modified bacterial outer membrane vesicles induce autoantibodies for tumor therapy. Acta Biomater. 2020;108:300-312. doi: 10.1016/j.actbio.2020.03.030

 

  1. Nakao R, Kobayashi H, Iwabuchi Y, et al. A highly immunogenic vaccine platform against encapsulated pathogens using chimeric probiotic Escherichia coli membrane vesicles. NPJ Vaccines. 2022;7:153. doi: 10.1038/s41541-022-00572-z

 

  1. Zhu K, Li G, Li J, et al. Hcp1-loaded staphylococcal membrane vesicle vaccine protects against acute melioidosis. Front Immunol. 2022;13:1089225. doi: 10.3389/fimmu.2022.1089225

 

  1. Gu TW, Wang MZ, Niu J, Chu Y, Guo KR, Peng LH. Outer membrane vesicles derived from E. coli as novel vehicles for transdermal and tumor targeting delivery. Nanoscale. 2020;12:18965-18977.

 

  1. Wang X, Thompson CD, Weidenmaier C, Lee JC. Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nat Commun. 2018;9:1379. doi: 10.1038/s41467-018-03847-z

 

  1. Gao J, Wang S, Dong X, Wang Z. RGD-expressed bacterial membrane-derived nanovesicles enhance cancer therapy via multiple tumorous targeting. Theranostics. 2021;11:3301-3316. doi: 10.7150/thno.51988

 

  1. Li Y, Ma X, Yue Y, et al. Rapid surface display of mRNA antigens by bacteria-derived outer membrane vesicles for a personalized tumor vaccine. Adv Mater. 2022;34:e2109984. doi: 10.1002/adma.202109984

 

  1. Feng Q, Ma X, Cheng K, et al. Engineered bacterial outer membrane vesicles as controllable two-way adaptors to activate macrophage phagocytosis for improved tumor immunotherapy. Adv Mater. 2022;34:e2206200. doi: 10.1002/adma.202206200

 

  1. Zanella I, König E, Tomasi M, et al. Proteome-minimized outer membrane vesicles from Escherichia coli as a generalized vaccine platform. J Extracell Vesicles. 2021;10:e12066. doi: 10.1002/jev2.12066

 

  1. Irene C, Fantappiè L, Caproni E, et al. Bacterial outer membrane vesicles engineered with lipidated antigens as a platform for Staphylococcus aureus vaccine. Proc Natl Acad Sci U S A. 2019;116:21780-21788. doi: 10.1073/pnas.1905112116

 

  1. König E, Gagliardi A, Riedmiller I, et al. Multi-antigen outer membrane vesicle engineering to develop polyvalent vaccines: The Staphylococcus aureus case. Front Immunol. 2021;12:752168. doi: 10.3389/fimmu.2021.752168

 

  1. Park KS, Svennerholm K, Crescitelli R, et al. Detoxified synthetic bacterial membrane vesicles as a vaccine platform against bacteria and SARS-CoV-2. J Nanobiotechnol. 2023;21:156. doi: 10.1186/s12951-023-01928-w

 

  1. Weyant K. B, Oloyede A, Pal S, et al. A modular vaccine platform enabled by decoration of bacterial outer membrane vesicles with biotinylated antigens. Nat Commun. 2023;14:464. doi: 10.1038/s41467-023-36101-2

 

  1. Li M, Li S, Zhou H, et al. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nat Commun. 2020;11:1126. doi: 10.1038/s41467-020-14963-0

 

  1. Chen Q, Huang G, Wu W, et al. A hybrid eukaryotic-prokaryotic nanoplatform with photothermal modality for enhanced antitumor vaccination. Adv Mater. 2020;32:e1908185. doi: 10.1002/adma.201908185

 

  1. Chen Q, Bai H, Wu W, et al. Bioengineering bacterial vesicle-coated polymeric nanomedicine for enhanced cancer immunotherapy and metastasis prevention. Nano Lett. 2020;20:11-21. doi: 10.1021/acs.nanolett.9b02182

 

  1. Chen G, Bai Y, Li Z, Wang F, Fan X, Zhou X. Bacterial extracellular vesicle-coated multi-antigenic nanovaccines protect against drug-resistant Staphylococcus aureus infection by modulating antigen processing and presentation pathways. Theranostics. 2020;10:7131-7149. doi: 10.7150/thno.44564

 

  1. Chen H, Zhou M, Zeng Y, et al. Biomimetic lipopolysaccharide-free bacterial outer membrane-functionalized nanoparticles for brain-targeted drug delivery. Adv Sci (Weinh). 2022;9:e2105854. doi: 10.1002/advs.202105854

 

  1. Jiang G, Xiang Z, Fang Q. Engineering magnetotactic bacteria MVs to synergize chemotherapy ferroptosis and immunotherapy for augmented antitumor therapy. Nanoscale Horizons. 2023;8:1062-1072.

 

  1. Zhai Y, Ma Y, Pang B, et al. A cascade targeting strategy based on modified bacterial vesicles for enhancing cancer immunotherapy. J Nanobiotechnol. 2021;19:434. doi: 10.1186/s12951-021-01193-9

 

  1. Liu X, Sun M, Pu F, Ren J, Qu X. Transforming intratumor bacteria into immunopotentiators to reverse cold tumors for enhanced immuno-chemodynamic therapy of triple-negative breast cancer. J Am Chem Soc. 2023;145:26296-26307. doi: 10.1021/jacs.3c09472

 

  1. Li Y, Zhang K, Wu Y, et al. Antigen capture and immune modulation by bacterial outer membrane vesicles as in situ vaccine for cancer immunotherapy post-photothermal therapy. Small. 2022;18:e2107461. doi: 10.1002/smll.202107461

 

  1. Pan J, Wang Z, Huang X, Xue J, Zhang S, Guo X, Zhou S. Bacteria-derived outer-membrane vesicles hitchhike neutrophils to enhance ischemic stroke therapy. Adv Mater. 2023;35:e2301779. doi: 10.1002/adma.202301779

 

  1. Liu XZ, Wen ZJ, Li YM, et al. Bioengineered bacterial membrane vesicles with multifunctional nanoparticles as a versatile platform for cancer immunotherapy. ACS Appl Mater Interfaces. 2023;15:3744-3759. doi: 10.1021/acsami.2c18244

 

  1. Shi R, Lv R, Dong Z, et al. Magnetically-targetable outer-membrane vesicles for sonodynamic eradication of antibiotic-tolerant bacteria in bacterial meningitis. Biomaterials. 2023;302:122320. doi: 10.1016/j.biomaterials.2023.122320

 

  1. Liang D, Liu C, Li Y, et al. Engineering fucoxanthin-loaded probiotics’ membrane vesicles for the dietary intervention of colitis. Biomaterials. 2023;297:122107. doi: 10.1016/j.biomaterials.2023.122107

 

  1. Kuerban K, Gao X, Zhang H, et al. Doxorubicin-loaded bacterial outer-membrane vesicles exert enhanced anti-tumor efficacy in non-small-cell lung cancer. Acta Pharm Sin B. 2020;10:1534-1548. doi: 10.1016/j.apsb.2020.02.002

 

  1. Han D, Wang F, Ma Y, et al. Redirecting antigens by engineered photosynthetic bacteria and derived outer membrane vesicles for enhanced cancer immunotherapy. ACS Nano. 2023;17:18716-18731. doi: 10.1021/acsnano.3c01912

 

  1. Chen X, Li P, Luo B, et al. Surface mineralization of engineered bacterial outer membrane vesicles to enhance tumor photothermal/ immunotherapy. ACS Nano. 2024;18:1357-1370. doi: 10.1021/acsnano.3c05714

 

  1. Wang S, Chen CC, Hu MH, et al. Arginine-linked HPV-associated E7 displaying bacteria-derived outer membrane vesicles as a potent antigen-specific cancer vaccine. J Transl Med. 2024;22:378. doi: 10.1186/s12967-024-05195-7

 

  1. Cheng K, Zhao R, Li Y, et al. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nat Commun. 2021;12:2041. doi: 10.1038/s41467-021-22308-8

 

  1. Sun J, Lin X, He Y, Zhang B, Zhou N, Huang JD. A bacterial outer membrane vesicle-based click vaccine elicits potent immune response against Staphylococcus aureus in mice. Front Immunol. 2023;14:1088501. doi: 10.3389/fimmu.2023.1088501

 

  1. Van der Voort ER, Van der Ley P, Van der Biezen J, et al. Specificity of human bactericidal antibodies against PorA P1.7,16 induced with a hexavalent meningococcal outer membrane vesicle vaccine. Infect Immun. 1996;64:2745-2751. doi: 10.1128/iai.64.7.2745-2751.1996

 

  1. Murase K. Cytolysin A (ClyA): A bacterial virulence factor with potential applications in nanopore technology, vaccine development, and tumor therapy. Toxins (Basel). 2022;14:78. doi: 10.3390/toxins14020078

 

  1. Earhart CF. Use of an Lpp-OmpA fusion vehicle for bacterial surface display. Methods Enzymol. 2000;326:506-516. doi: 10.1016/s0076-6879(00)26072-2

 

  1. Bonam SR, Partidos CD, Halmuthur SKM, Muller S. An overview of novel adjuvants designed for improving vaccine efficacy. Trends Pharmacol Sci. 2017;38:771-793. doi: 10.1016/j.tips.2017.06.002

 

  1. Veggiani G, Nakamura T, Brenner MD, et al. Programmable polyproteams built using twin peptide superglues. Proc Natl Acad Sci U S A. 2016;113:1202-1207. doi: 10.1073/pnas.1519214113

 

  1. Zakeri B, Fierer JO, Celik E, et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A. 2012;109:E690-E697. doi: 10.1073/pnas.1115485109

 

  1. Park KS, Svennerholm K, Crescitelli R, Lässer C, Gribonika I, Lötvall J. Synthetic bacterial vesicles combined with tumour extracellular vesicles as cancer immunotherapy. J Extracell Vesicles. 2021;10:e12120. doi: 10.1002/jev2.12120

 

  1. Xu W, Hao X, Li Y, et al. Safe induction of acute inflammation with enhanced antitumor immunity by hydrogel-mediated outer membrane vesicle delivery. Small Methods. 2024;8:e2301620. doi: 10.1002/smtd.202301620

 

  1. Jung HS, Verwilst P, Sharma A, Shin J, Sessler JL, Kim JS. Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem Soc Rev. 2018;47:2280-2297. doi: 10.1039/c7cs00522a

 

  1. Witkowski M, Witkowski M, Gagliani N, Huber S. Recipe for IBD: Can we use food to control inflammatory bowel disease? Semin Immunopathol. 2018;40:145-156. doi: 10.1007/s00281-017-0658-5

 

  1. Pirolli NH, Bentley WE, Jay SM. Bacterial extracellular vesicles and the gut-microbiota brain axis: Emerging roles in communication and potential as therapeutics. Adv Biol (Weinh). 2021;5:e2000540. doi: 10.1002/adbi.202000540

 

  1. Jalava K, Eko FO, Riedmann E, Lubitz W. Bacterial ghosts as carrier and targeting systems for mucosal antigen delivery. Expert Rev Vaccines. 2003;2:45-51. doi: 10.1586/14760584.2.1.45

 

  1. Ji S, Moon ES, Noh HB, et al. Protective immunity against listeria monocytogenes in rats, provided by HCl- and NaOH-induced listeria monocytogenes bacterial ghosts (LMGs) as vaccine candidates. Int J Mol Sci. 2022;23:1946. doi: 10.3390/ijms23041946

 

  1. Oviedo-Orta E, Ahmed S, Rappuoli R, Black S. Prevention and control of meningococcal outbreaks: The emerging role of serogroup B meningococcal vaccines. Vaccine. 2015;33:3628-3635. doi: 10.1016/j.vaccine.2015.06.046

 

  1. Vesikari T, Østergaard L, Diez-Domingo J, et al. Meningococcal Serogroup B bivalent rLP2086 vaccine elicits broad and robust serum bactericidal responses in healthy adolescents. J Pediatr Infect Dis Soc. 2016;5:152-160.

 

  1. Ostergaard L, Lucksinger GH, Absalon J, et al. A phase 3, randomized, active-controlled study to assess the safety and tolerability of meningococcal serogroup B vaccine bivalent rLP2086 in healthy adolescents and young adults. Vaccine. 2016;34:1465-1471. doi: 10.1016/j.vaccine.2016.01.044

 

  1. Perez-Vilar S, Dores GM, Marquez PL, et al. Safety surveillance of meningococcal group B vaccine (Bexsero®), vaccine adverse event reporting system, 2015-2018. Vaccine. 2022;40:247-254. doi: 10.1016/j.vaccine.2021.11.071

 

  1. Gorringe AR, Pajón R. Bexsero: A multicomponent vaccine for prevention of meningococcal disease. Hum Vaccin Immunother. 2012;8:174-183. doi: 10.4161/hv.18500

 

  1. Wang F, Ho PY, Kam C, et al. An AIE-active probe for efficient detection and high-throughput identification of outer membrane vesicles. Aggregate. 2023;4:e312. doi: 10.1002/agt2.312

 

  1. Zhang L, Ma W, Gan X, et al. Adequate enrichment of extracellular vesicles in laboratory medicine. Interdiscip Med. 2023;1:e20220003. doi: 10.1002/inmd.20220003

 

  1. Welsh JA, Goberdhan DCI, O’Driscoll L, et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 2024;13:e12404. doi: 10.1002/jev2.12404

 

  1. Wen M, Wang J, Ou Z, et al. Bacterial extracellular vesicles: A position paper by the microbial vesicles task force of the Chinese society for extracellular vesicles. Interdiscip Med. 2023;1:e20230017. doi: 10.1002/INMD.20230017

 

  1. Castillo-Romero KF, Santacruz A, González-Valdez J. Production and purification of bacterial membrane vesicles for biotechnology applications: Challenges and opportunities. Electrophoresis. 2023;44:107-124. doi: 10.1002/elps.202200133

 

  1. Sawabe T, Ojima Y, Nakagawa M, et al. Construction and characterization of a hypervesiculation strain of Escherichia coli Nissle 1917. PLoS One. 2024;19:e0301613. doi: 10.1371/journal.pone.0301613

 

  1. Andreoni F, Toyofuku M, Menzi C, et al. Antibiotics stimulate formation of vesicles in Staphylococcus aureus in both phage-dependent and -independent fashions and via different routes. Antimicrob Agents Chemother. 2019;63:e01439-18.
Conflict of interest
All authors declare no competing interests.
Share
Back to top