The role of Wnt signalling in osteoporosis: A bibliometric analysis
Osteoporosis has long been a key area of medical research, as the Wnt signalling pathway is essential for bone formation and maintaining bone balance. The purpose of this study was to perform a bibliometric analysis of the literature on osteoporosis and Wnt signalling to identify research trends, hot topics, and emerging areas of interest in this field. A visual analysis of the literature on osteoporosis and Wnt signalling offers a clearer perspective on the current research landscape, highlighting key topics and emerging trends in this area. The present study analysed publications related to osteoporosis and Wnt signalling from January 1, 2002 to December 31, 2021, using data from the Web of Science Core Collection. A total of 1553 publications were examined via tools, such as Microsoft Excel, CiteSpace, Vosviewer, and the Bibliometrics online analysis platform. The findings indicated that China has the highest number of publications in this area, with 489 articles. Warman Mathew’s work has the most citations, totalling 1031 articles, and the journal Bone has published the most articles, with 89 publications. Current research in this field has focused primarily on osteogenesis, metabolism, fractures, and osteoblasts. The present study highlights the significant role of Wnt signalling in bone homeostasis and disease, suggesting that future research will explore novel metabolic therapies for osteoporosis by targeting the Wnt signalling pathway with drugs.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
- Hardy E, Fernandez-Patron C. Destroy to rebuild: The connection between bone tissue remodeling and matrix metalloproteinases. Front Physiol. 2020;11:47. doi: 10.3389/fphys.2020.00047
- Li SS, He SH, Xie PY, et al. Recent progresses in the treatment of osteoporosis. Front Pharmacol. 2021;12:717065. doi: 10.3389/fphar.2021.717065
- Liang B, Burley G, Lin S, Shi YC. Osteoporosis pathogenesis and treatment: Existing and emerging avenues. Cell Mol Biol Lett. 2022;27:72. doi: 10.1186/s11658-022-00371-3
- Jiang NS, Newton B, Jiang X. An overview of osteoporosis management. OBM Geriatrics. 2021;5:181. doi: 10.21926/obm.geriatr.2104181
- Chen YJ, Jia LH, Han TH, et al. Osteoporosis treatment: Current drugs and future developments. Front Pharmacol. 2024;15:1456796. doi: 10.3389/fphar.2024.1456796
- Wang H, Luo Y, Wang H, Li F, Yu F, Ye L. Mechanistic advances in osteoporosis and anti-osteoporosis therapies. MedComm (2020). 2023;4:e244. doi: 10.1002/mco2.244
- Song S, Guo Y, Yang Y, Fu D. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol Ther. 2022;237:108168. doi: 10.1016/j.pharmthera.2022.108168
- Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8:886. doi: 10.3390/cells8080886
- Yeon JT, Kim KJ, Son YJ, Park SJ, Kim SH. Idelalisib inhibits osteoclast differentiation and pre-osteoclast migration by blocking the PI3Kδ-Akt-c-Fos/NFATc1 signaling cascade. Arch Pharm Res. 2019;42:712-721. doi: 10.1007/s12272-019-01163-8
- Chen L, Shi X, Xie J, et al. Apelin-13 induces mitophagy in bone marrow mesenchymal stem cells to suppress intracellular oxidative stress and ameliorate osteoporosis by activation of AMPK signaling pathway. Free Radic Biol Med. 2021;163:356-368. doi: 10.1016/j.freeradbiomed.2020.12.235
- Hayat R, Manzoor M, Hussain A. Wnt signaling pathway: A comprehensive review. Cell Biol Int. 2022;46:863-877. doi: 10.1002/cbin.11797
- Liu J, Xiao Q, Xiao J, et al. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7:3. doi: 10.1038/s41392-021-00762-6
- Muccioli S, Brillo V, Chieregato L, Leanza L, Checchetto V, Costa R. From channels to canonical wnt signaling: A pathological perspective. Int J Mol Sci. 2021;22:4613. doi: 10.3390/ijms22094613
- Chiarini F, Paganelli F, Martelli AM, Evangelisti C. The role played by Wnt/β-catenin signaling pathway in acute lymphoblastic leukemia. Int J Mol Sci. 2020;21:1098. doi: 10.3390/ijms21031098
- Wu Z, Li W, Jiang K, et al. Regulation of bone homeostasis: Signaling pathways and therapeutic targets. MedComm (2020). 2024;5:e657. doi: 10.1002/mco2.657
- Amjadi-Moheb F, Akhavan-Niaki H. Wnt signaling pathway in osteoporosis: Epigenetic regulation, interaction with other signaling pathways, and therapeutic promises. J Cell Physiol. 2019;234:14641-14650. doi: 10.1002/jcp.28207
- Udagawa N, Koide M, Nakamura M, et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021;39:19-26. doi: 10.1007/s00774-020-01162-6
- Yang J, Ueharu H, Mishina Y. Energy metabolism: A newly emerging target of BMP signaling in bone homeostasis. Bone. 2020;138:115467. doi: 10.1016/j.bone.2020.115467
- Gao Y, Huang E, Zhang H, et al. Crosstalk between Wnt/β-catenin and estrogen receptor signaling synergistically promotes osteogenic differentiation of mesenchymal progenitor cells. PLoS One. 2013;8:e82436. doi: 10.1371/journal.pone.0082436
- Zanotti S, Smerdel-Ramoya A, Stadmeyer L, Durant D, Radtke F, Canalis E. Notch inhibits osteoblast differentiation and causes osteopenia. Endocrinology. 2008;149:3890-3899. doi: 10.1210/en.2008-0140
- Marini F, Giusti F, Palmini G, Brandi ML. Role of Wnt signaling and sclerostin in bone and as therapeutic targets in skeletal disorders. Osteoporos Int. 2023;34:213-238. doi: 10.1007/s00198-022-06523-7
- Viggers R, Al-Mashhadi Z, Starup-Linde J, Vestergaard P. The efficacy of alendronate versus denosumab on major osteoporotic fracture risk in elderly patients with diabetes mellitus: A Danish retrospective cohort study. Front Endocrinol (Lausanne). 2021;12:826997. doi: 10.3389/fendo.2021.826997
- Huang X, Yang Z, Zhang J, et al. Bibliometric analysis based on web of science: Current perspectives and potential trends of SMAD7 in oncology. Front Cell Dev Biol. 2021;9:712732.doi: 10.3389/fcell.2021.712732
- Wang D, Huangfu Y, Dong Z, Dong Y. Research hotspots and evolution trends of carbon neutrality-visual analysis of bibliometrics based on CiteSpace. Sustainability. 2022;14:1078. doi: 10.3390/su14031078
- Cheng Y, Zhao WW, Chen SY, Zhang YH. Research on psychache in suicidal population: A bibliometric and visual analysis of papers published during 1994-2020. Front Psychiatry. 2021;12:727663. doi: 10.3389/fpsyt.2021.727663
- Wang Q, Li R, Zhan L. Blockchain technology in the energy sector: From basic research to real world applications. Comput Sci Rev. 2021;39:100362. doi: 10.1016/j.cosrev.2021.100362
- Ng JY. Global research trends at the intersection of coronavirus disease 2019 (COVID-19) and traditional, integrative, and complementary and alternative medicine: A bibliometric analysis. BMC Complement Med Ther. 2020;20:353. doi: 10.1186/s12906-020-03151-8
- Li C, Shu X, Liu X. Research hotspots and frontiers in post stroke pain: A bibliometric analysis study. Front Mol Neurosci. 2022;15:905679. doi: 10.3389/fnmol.2022.905679
- Zhang J, Zhao R, Huang Y, et al. The application of tranexamic acid in joint arthroplasty: A 20-year bibliometric analysis. Front Public Health. 2022;10:1013461. doi: 10.3389/fpubh.2022.1013461
- Qi B, Jin S, Qian H, Zou Y. Bibliometric analysis of chronic traumatic encephalopathy research from 1999 to 2019. Int J Environ Res Public Health. 2020;17:5411. doi: 10.3390/ijerph17155411
- Wu H, Cheng K, Tong L, Wang Y, Yang W, Sun Z. Knowledge structure and emerging trends on osteonecrosis of the femoral head: A bibliometric and visualized study. J Orthop Surg Res. 2022;17:194. doi: 10.1186/s13018-022-03068-7
- Kang KS, Hong JM, Robling AG. Postnatal β-catenin deletion from Dmp1-expressing osteocytes/osteoblasts reduces structural adaptation to loading, but not periosteal load-induced bone formation. Bone. 2016;88:138-145. doi: 10.1016/j.bone.2016.04.028
- Robling AG. The expanding role of Wnt signaling in bone metabolism. Bone. 2013;55:256-257. doi: 10.1016/j.bone.2013.03.001
- Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nat Med. 2013;19:179-192. doi: 10.1038/nm.3074
- Noh JY, Yang Y, Jung H. Molecular mechanisms and emerging therapeutics for osteoporosis. Int J Mol Sci. 2020;21:7623. doi: 10.3390/ijms21207623
- Safari B, Davaran S, Aghanejad A. Osteogenic potential of the growth factors and bioactive molecules in bone regeneration. Int J Biol Macromol. 2021;175:544-557. doi: 10.1016/j.ijbiomac.2021.02.052
- Tonk CH, Shoushrah SH, Babczyk P, et al. Therapeutic treatments for osteoporosis-which combination of pills is the best among the bad? Int J Mol Sci. 2022;23:1393. doi: 10.3390/ijms23031393