·
REVIEW
·

Therapeutic potential of natural polymer-based transdermal drug delivery system for musculoskeletal disorders

Yantao Zhang1,2 Guirong Wang3 Yan Zhou1,2*
Show Less
1 Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
2 Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
3 Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States of America
BMT 2025 , 6(3), 314–333; https://doi.org/10.12336/bmt.24.00045
Submitted: 26 July 2024 | Revised: 13 September 2024 | Accepted: 22 October 2024 | Published: 22 September 2025
Copyright © 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

The transdermal drug delivery system is a highly safe and well-tolerated therapeutic approach with significant potential for treating musculoskeletal disorders. However, its clinical application is limited by the low skin permeability of many active drugs in its formulations. To overcome this challenge, advancements in skin permeation enhancement techniques are essential. Over the past decade, natural polymers have been increasingly incorporated into various nanocarriers due to their availability, biodegradability, and biocompatibility, offering new options for the effective dispersion of suspended solids. Furthermore, surface functionalisation of the numerous functional groups found in natural polymers allows them to be transformed into targeted and stimulus-responsive materials, enabling precise drug delivery to musculoskeletal tissues. This review examines the mechanisms of action of natural polymer-based transdermal drug delivery system, covering penetration enhancers, nanoparticles, microneedles, hydrogels, and nanofibres derived from chitosan, hyaluronic acid, sodium alginate, cellulose, and proteins, and their applications in treating musculoskeletal disorders. Moreover, it outlines the current challenges and prospects of polymer-based transdermal drug delivery system for localised treatment, offering insights into current therapeutic approaches and proposing new directions for advancements in this field.

Keywords
Microneedles
Musculoskeletal disorders
Natural polymers
Polysaccharides
Protein-based polymer
Transdermal drug delivery system
Funding
This work was funded by National Natural Science Foundation of China (Nos. 82272528, 81802203), and Natural Science Foundation of Hubei Province (No. 2022CFB117).
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

  1. Yin P, Jiang Y, Fang X, et al. Cell-based therapies for degenerative musculoskeletal diseases. Adv Sci (Weinh). 2023;10:e2207050. doi: 10.1002/advs.202207050

 

  1. Drosos GC, Vedder D, Houben E, et al. EULAR recommendations for cardiovascular risk management in rheumatic and musculoskeletal diseases, including systemic lupus erythematosus and antiphospholipid syndrome. Ann Rheum Dis. 2022;81:768-779. doi: 10.1136/annrheumdis-2021-221733

 

  1. Mannion ML, Xie F, FitzGerald JD, et al. Changes in the workforce characteristics of providers who care for adult patients with rheumatologic and musculoskeletal disease in the United States. Arthritis Rheumatol. 2024;76:1153-1161. doi: 10.1002/art.42833

 

  1. Zhou Z, Liu J, Xiong T, Liu Y, Tuan RS, Li ZA. Engineering innervated musculoskeletal tissues for regenerative orthopedics and disease modeling. Small. 2024;20:e2310614. doi: 10.1002/smll.202310614

 

  1. Chen N, Fong DYT, Wong JYH. Health and economic outcomes associated with musculoskeletal disorders attributable to high body mass index in 192 countries and territories in 2019. JAMA Netw Open. 2023;6:e2250674. doi: 10.1001/jamanetworkopen.2022.50674

 

  1. Song S, Guo Y, Yang Y, Fu D. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol Ther. 2022;237:108168. doi: 10.1016/j.pharmthera.2022.108168

 

  1. Reid IR, Billington EO. Drug therapy for osteoporosis in older adults. Lancet. 2022;399:1080-1092. doi: 10.1016/S0140-6736(21)02646-5

 

  1. Ramiro S, Nikiphorou E, Sepriano A, et al. ASAS-EULAR recommendations for the management of axial spondyloarthritis: 2022 update. Ann Rheum Dis. 2023;82:19-34. doi: 10.1136/ard-2022-223296

 

  1. Sammaritano LR, Bermas BL, Chakravarty EE, et al. 2020 American College of Rheumatology guideline for the management of reproductive health in rheumatic and musculoskeletal diseases. Arthritis Rheumatol. 2020;72:529-556. doi: 10.1002/art.41191

 

  1. Zhang GQ, Chen JL, Luo Y, et al. Menopausal hormone therapy and women’s health: An umbrella review. PLoS Med. 2021;18:e1003731. doi: 10.1371/journal.pmed.1003731

 

  1. Elbers LPB, Raterman HG, Lems WF. Bone mineral density loss and fracture risk after discontinuation of anti-osteoporotic drug treatment: A narrative review. Drugs. 2021;81:1645-1655. doi: 10.1007/s40265-021-01587-x

 

  1. Schjerning AM, McGettigan P, Gislason G. Cardiovascular effects and safety of (non-aspirin) NSAIDs. Nat Rev Cardiol. 2020;17:574-584. doi: 10.1038/s41569-020-0366-z

 

  1. Yang D, Chen M, Sun Y, et al. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater. 2021;121:119-133 doi: 10.1016/j.actbio.2020.12.004

 

  1. Zhao Y, Chen X, He P, et al. Transdermal microneedles alleviated rheumatoid arthritis by inducing immune tolerance via skin-resident antigen presenting cells. Small. 2024;20:e2307366. doi: 10.1002/smll.202307366

 

  1. He J, Zhang Y, Yu X, Xu C. Wearable patches for transdermal drug delivery. Acta Pharm Sin B. 2023;13:2298-2309. doi: 10.1016/j.apsb.2023.05.009

 

  1. Li B, Lu G, Liu W, Liao L, Ban J, Lu Z. Formulation and evaluation of PLGA nanoparticulate-based microneedle system for potential treatment of neurological diseases. Int J Nanomedicine. 2023;18:3745-3760. doi: 10.2147/IJN.S415728

 

  1. Tyeb S, Verma V, Kumar N. Polysaccharide based transdermal patches for chronic wound healing: Recent advances and clinical perspective. Carbohydr Polym. 2023;316:121038. doi: 10.1016/j.carbpol.2023.121038

 

  1. Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics. 2020;12:855. doi: 10.3390/pharmaceutics12090855

 

  1. Han W, Liu F, Li Y, et al. Advances in natural polymer-based transdermal drug delivery systems for tumor therapy. Small. 2023;19:2301670. doi: 10.1002/smll.202301670

 

  1. Chatterjee S, Chi-Leung Hui P. Review of stimuli-responsive polymers in drug delivery and textile application. Molecules. 2019;24:2547. doi: 10.3390/molecules24142547

 

  1. Wu S, Liu G, Shao P, et al. Transdermal sustained release properties and anti-photoaging efficacy of liposome-thermosensitive hydrogel system. Adv Healthc Mater. 2024;13:2301933. doi: 10.1002/adhm.202470008

 

  1. Liu JF, GhavamiNejad A, Lu B, et al. “Smart” matrix microneedle patch made of self-crosslinkable and multifunctional polymers for delivering insulin on-demand. Adv Sci (Weinh). 2023;10:e2303665. doi: 10.1002/advs.202303665

 

  1. Yang Y, Xu L, Wang J, et al. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydr Polym. 2022;283, 119161. doi: 10.1016/j.carbpol.2022.119161

 

  1. Guo B, Dong R, Liang Y, Li M. Haemostatic materials for wound healing applications. Nat Rev Chem. 2021;5:773-791. doi: 10.1038/s41570-021-00323-z

 

  1. Clarke RW, Sandmeier T, Franklin KA, et al. Dynamic crosslinking compatibilizes immiscible mixed plastics. Nature. 2023;616:731-739. doi: 10.1038/s41586-023-05858-3

 

  1. Cao Y, He Z, Chen Q, et al. Helper-polymer based five-element nanoparticles (FNPs) for lung-specific mRNA delivery with long-term stability after lyophilization. Nano Lett. 2022;22:6580-6589. doi: 10.1021/acs.nanolett.2c01784

 

  1. He J, Zhou S, Wang J, et al. Anti-inflammatory and anti-oxidative electrospun nanofiber membrane promotes diabetic wound healing via macrophage modulation. J Nanobiotechnology. 2024;22:116. doi: 10.21203/rs.3.rs-3853738/v1

 

  1. Chen J, Rizvi A, Patterson JP, Hawker CJ. Discrete libraries of amphiphilic poly(ethylene glycol) graft copolymers: Synthesis, assembly, and bioactivity. J Am Chem Soc. 2022;144:19466-19474. doi: 10.1021/jacs.2c07859

 

  1. Goëlo V, Chaumun M, Gonçalves A, Estevinho BN, Rocha F. Polysaccharide-based delivery systems for curcumin and turmeric powder encapsulation using a spray-drying process. Powder Technol. 2020;370:137-146. doi: 10.1016/j.powtec.2020.05.016

 

  1. Yang J, Chu Z, Jiang Y, et al. Multifunctional hyaluronic acid microneedle patch embedded by cerium/zinc-based composites for accelerating diabetes wound healing. Adv Healthc Mater. 2023;12:2300725. doi: 10.1002/adhm.202300725

 

  1. Chen MC, Ling MH, Lai KY, Pramudityo E. Chitosan microneedle patches for sustained transdermal delivery of macromolecules. Biomacromolecules. 2012;13:4022-4031. doi: 10.1021/bm301293d

 

  1. Yue Y, Han J, Han G, French AD, Qi Y, Wu Q. Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: Core-shell structure formation and property characterization. Carbohydr Polym. 2016;147:155-164. doi: 10.1016/j.carbpol.2016.04.005

 

  1. Yu W, Jiang G, Zhang Y, Liu D, Xu B, Zhou J. Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. Mater Sci Eng C. 2017;80:187-196. doi: 10.1016/j.msec.2017.05.143

 

  1. Castro KC, Campos MGN, Mei LHI. Hyaluronic acid electrospinning: Challenges, applications in wound dressings and new perspectives. Int J Biol Macromol. 2021;173:251-266.

 

  1. Li M, Shi X, Yang B, et al. Single-component hyaluronic acid hydrogel adhesive based on phenylboronic ester bonds for hemostasis and wound closure. Carbohydr Polym. 2022;296:119953. doi: 10.1016/j.carbpol.2022.119953

 

  1. Zhou J, Liu Y, Liu X, et al. Hyaluronic acid-based dual network hydrogel with sustained release of platelet-rich plasma as a diabetic wound dressing. Carbohydr Polym. 2023;314:120924. doi: 10.1016/j.carbpol.2023.120924

 

  1. Xing H, Pan X, Hu Y, et al. High molecular weight hyaluronic acid-liposome delivery system for efficient transdermal treatment of acute and chronic skin photodamage. Acta Biomater. 2024;182:171-187. doi: 10.1016/j.actbio.2024.05.026

 

  1. Wang B, Zhang W, Pan Q, et al. Hyaluronic acid-based CuS nanoenzyme biodegradable microneedles for treating deep cutaneous fungal infection without drug resistance. Nano Lett. 2023;23:1327-1336. doi: 10.1021/acs.nanolett.2c04539.s001

 

  1. Yu M, Lu Z, Shi Y, Du Y, Chen X, Kong M. Systematic comparisons of dissolving and swelling hyaluronic acid microneedles in transdermal drug delivery. Int J Biol Macromol. 2021;191:783-791. doi: 10.1016/j.ijbiomac.2021.09.161

 

  1. Ni C, Zhang Z, Wang Y, Zhang Z, Guo X, Lv H. Hyaluronic acid and HA-modified cationic liposomes for promoting skin penetration and retention. J Control Release. 2023;357:432-443. doi: 10.1016/j.jconrel.2023.03.049

 

  1. Chen K, Zhao Y, Zhao W, et al. Lubricating microneedles system with multistage sustained drug delivery for the treatment of osteoarthritis. Small. 2024;20:e2307281.

 

  1. Yao S, Chi J, Wang Y, Zhao Y, Luo Y, Wang Y. Zn-MOF encapsulated antibacterial and degradable microneedles array for promoting wound healing. Adv Healthc Mater. 2021;10:e2100056. doi: 10.1002/adhm.202170056

 

  1. Sakulwech S, Lourith N, Ruktanonchai U, Kanlayavattanakul M. Preparation and characterization of nanoparticles from quaternized cyclodextrin-grafted chitosan associated with hyaluronic acid for cosmetics. Asian J Pharm Sci. 2018;13:498-504. doi: 10.1016/j.ajps.2018.05.006

 

  1. Kim ES, Kim DY, Lee JS, Lee HG. Quercetin delivery characteristics of chitosan nanoparticles prepared with different molecular weight polyanion cross-linkers. Carbohydr Polym. 2021;267:118157. doi: 10.1016/j.carbpol.2021.118157

 

  1. Chen K, Chen X, Han X, Fu Y. A comparison study on the release kinetics and mechanism of bovine serum albumin and nanoencapsulated albumin from hydrogel networks. Int J Biol Macromol. 2020;163:1291-1300. doi: 10.1016/j.ijbiomac.2020.07.043

 

  1. Pathak R, Bhatt S, Punetha VD, Punetha M. Chitosan nanoparticles and based composites as a biocompatible vehicle for drug delivery: A review. Int J Biol Macromol. 2023;253:127369. doi: 10.1016/j.ijbiomac.2023.127369

 

  1. Kazemi Shariat Panahi H, Dehhaghi M, Amiri H, et al. Current and emerging applications of saccharide-modified chitosan: A critical review. Biotechnol Adv. 2023;66:108172. doi: 10.1016/j.biotechadv.2023.108172

 

  1. Jiang T, Xu L, Zhao M, et al. Dual targeted delivery of statins and nucleic acids by chitosan-based nanoparticles for enhanced antiatherosclerotic efficacy. Biomaterials. 2022;280:121324. doi: 10.1016/j.biomaterials.2021.121324

 

  1. Rashki S, Asgarpour K, Tarrahimofrad H, et al. Chitosan-based nanoparticles against bacterial infections. Carbohydr Polym. 2021;251:117108. doi: 10.1016/j.carbpol.2020.117108

 

  1. Truong TH, Alcantara KP, Bulatao BPI, et al. Chitosan-coated nanostructured lipid carriers for transdermal delivery of tetrahydrocurcumin for breast cancer therapy. Carbohydr Polym. 2022;288:119401. doi: 10.1016/j.carbpol.2022.119401

 

  1. Ryall C, Chen S, Duarah S, Wen J. Chitosan-based microneedle arrays for dermal delivery of Centella asiatica. Int J Pharm. 2022:627;122221. doi: 10.1016/j.ijpharm.2022.122221

 

  1. Zhu W, Wei T, Xu Y, et al. Non-invasive transdermal delivery of biomacromolecules with fluorocarbon-modified chitosan for melanoma immunotherapy and viral vaccines. Nat Commun. 2024;15:820. doi: 10.21203/rs.3.rs-1527855/v1

 

  1. Mohamed AL, Elmotasem H, Salama AAA. Colchicine mesoporous silica nanoparticles/hydrogel composite loaded cotton patches as a new encapsulator system for transdermal osteoarthritis management. Int J Biol Macromol. 2020;164:1149-1163. doi: 10.1016/j.ijbiomac.2020.07.133

 

  1. Saqib MN, Ahammed S, Liu F, Zhong F. Customization of liquid-core sodium alginate beads by molecular engineering. Carbohydr Polym. 2022;284:119047. doi: 10.1016/j.carbpol.2021.119047

 

  1. Zhang X, Zhang R, Zhao S, Wang T, Zhang B, Zhao H. Development, characterization and functional properties of sodium alginate-based films incorporated with Schisandra chinensis extract-natamycin complex. Int J Biol Macromol. 2023;253:127435. doi: 10.1016/j.ijbiomac.2023.127435

 

  1. Shao W, Liu H, Liu X, et al. Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohydr Polym. 2015;132:351-358. doi: 10.1016/j.carbpol.2015.06.057

 

  1. Khan S, Minhas MU. Micro array patch assisted transdermal delivery of high dose, ibuprofen sodium using thermoresponsive sodium alginate/poly (vinylcaprolactam) in situ gels depot. Int J Biol Macromol. 2023;252:126464. doi: 10.1016/j.ijbiomac.2023.126464

 

  1. Guo H, Qin Q, Chang JS, Lee DJ. Modified alginate materials for wastewater treatment: Application prospects. Bioresour Technol. 2023;387:129639. doi: 10.1016/j.biortech.2023.129639

 

  1. Ouyang XK, Zhao L, Jiang F, Ling J, Yang LY, Wang N. Cellulose nanocrystal/calcium alginate-based porous microspheres for rapid hemostasis and wound healing. Carbohydr Polym. 2022;293:119688. doi: 10.1016/j.carbpol.2022.119688

 

  1. Chen J, Ren Y, Liu W, et al. All-natural and biocompatible cellulose nanocrystals films with tunable supramolecular structure. Int J Biol Macromol. 2021;193:1324-1331.

 

  1. Chang G, Dang Q, Liu C, et al. Carboxymethyl chitosan and carboxymethyl cellulose based self-healing hydrogel for accelerating diabetic wound healing. Carbohydr Polym. 2022;292:119687. doi: 10.1016/j.carbpol.2022.119687

 

  1. Dong D, Chen R, Jia J, et al. Tailoring and application of a multi-responsive cellulose nanofibre-based 3D nanonetwork wound dressing. Carbohydr Polym. 2023;305:120542. doi: 10.1016/j.carbpol.2023.120542

 

  1. Weyell P, Beekmann U, Küpper C, et al. Tailor-made material characteristics of bacterial cellulose for drug delivery applications in dentistry. Carbohydr Polym. 2019;207:1-10. doi: 10.1016/j.carbpol.2018.11.061

 

  1. Madaghiele M, Demitri C, Surano I, et al. Biomimetic cellulose-based superabsorbent hydrogels for treating obesity. Sci Rep. 2021;11:21394. doi: 10.1038/s41598-021-04527-7

 

  1. Maver U, Xhanari K, Žižek M, et al. Carboxymethyl cellulose/diclofenac bioactive coatings on AISI 316LVM for controlled drug delivery, and improved osteogenic potential. Carbohydr Polym. 2020;230:115612. doi: 10.1016/j.carbpol.2019.115612

 

  1. Lv H, Gao N, Zhou Q, Wang Y, Ling G, Zhang P. Collagen-based dissolving microneedles with flexible pedestals: A transdermal delivery system for both anti-aging and skin diseases. Adv Healthc Mater. 2023;12:e2203295. doi: 10.1002/adhm.202203295

 

  1. Li JY, Feng YH, He YT, et al. Thermosensitive hydrogel microneedles for controlled transdermal drug delivery. Acta Biomater. 2022;153:308-319. doi: 10.1016/j.actbio.2022.08.061

 

  1. Siemiradzka W, Bułaś L, Dolińska B. Permeation of albumin through the skin depending on its concentration and the substrate used in simulated conditions in vivo. Biomed Pharmacother. 2022;155:113722. doi: 10.1016/j.biopha.2022.113722

 

  1. Li Y, Ju XJ, Fu H, et al. Composite separable microneedles for transdermal delivery and controlled release of salmon calcitonin for osteoporosis therapy. ACS Appl Mater Interfaces. 2023;15:638-650. doi: 10.1021/acsami.2c19241

 

  1. Holwerda AM, van Loon LJC. The impact of collagen protein ingestion on musculoskeletal connective tissue remodeling: A narrative review. Nutr Rev. 2022;80:1497-1514. doi: 10.1093/nutrit/nuab083

 

  1. Chen Z, Xiao L, Hu C, et al. Aligned lovastatin-loaded electrospun nanofibers regulate collagen organization and reduce scar formation. Acta Biomater. 2023;164:240-252. doi: 10.1016/j.actbio.2023.04.015

 

  1. Peng W, Li D, Dai K, et al. Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. Int J Biol Macromol. 2022;208:400-408. doi: 10.1016/j.ijbiomac.2022.03.002

 

  1. Shi S, Zhang J, Quan S, Yang Y, Yao L, Xiao J. A highly biocompatible and bioactive transdermal nano collagen for enhanced healing of UV-damaged skin. Int J Biol Macromol. 2024;272:132857. doi: 10.1016/j.ijbiomac.2024.132857

 

  1. Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in gelatin bioinks to optimize bioprinted cell functions. Adv Healthc Mater. 2023;12:e2203148. doi: 10.1002/adhm.202203148

 

  1. Li J, Chee HL, Chong YT, et al. Hofmeister effect mediated strong PHEMA-gelatin hydrogel actuator. ACS Appl Mater Interfaces. 2022;14:23826-23838. doi: 10.1021/acsami.2c01922

 

  1. Huang Q, Wu T, Guo Y, et al. Platelet-rich plasma-loaded bioactive chitosan@sodium alginate@gelatin shell-core fibrous hydrogels with enhanced sustained release of growth factors for diabetic foot ulcer healing. Int J Biol Macromol. 2023;234:123722. doi: 10.1016/j.ijbiomac.2023.123722

 

  1. Demir B, Rosselle L, Voronova A, et al. Innovative transdermal delivery of insulin using gelatin methacrylate-based microneedle patches in mice and mini-pigs. Nanoscale Horiz. 2022;7:174-184. doi: 10.1039/d1nh00596k

 

  1. Zhou Z, Cui J, Wu S, Geng Z, Su J. Silk fibroin-based biomaterials for cartilage/osteochondral repair. Theranostics. 2022;12:5103-5124. doi: 10.7150/thno.74548

 

  1. Qi Z, Yan Z, Tan G, et al. Silk fibroin microneedles for transdermal drug delivery: Where do we stand and how far can we proceed? Pharmaceutics. 2023;15:355. doi: 10.3390/pharmaceutics15020355

 

  1. Zhao Y, Zhu ZS, Guan J, Wu SJ. Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels. Acta Biomater. 2021;125:57-71. doi: 10.1016/j.actbio.2021.02.018

 

  1. Wang Z, Song X, Cui Y, et al. Silk fibroin H-fibroin/poly(ε-caprolactone) core-shell nanofibers with enhanced mechanical property and long-term drug release. J Colloid Interface Sci. 2021;593:142-151. doi: 10.1016/j.jcis.2021.02.099

 

  1. Sakunpongpitiporn P, Naeowong W, Sirivat A. Enhanced transdermal insulin basal release from silk fibroin (SF) hydrogels via iontophoresis. Drug Deliv. 2022;29:2234-2244. doi: 10.1080/10717544.2022.2096717

 

  1. Lei C, Liu XR, Chen QB, et al. Hyaluronic acid and albumin based nanoparticles for drug delivery. J Control Release. 2021;331:416-433.

 

  1. Molitoris BA, Sandoval RM, Yadav SPS, Wagner MC. Albumin uptake and processing by the proximal tubule: Physiological, pathological, and therapeutic implications. Physiol Rev. 2022;102:1625-1667. doi: 10.1152/physrev.00014.2021

 

  1. Xia T, Zhu Y, Li K, et al. Microneedles loaded with cerium-manganese oxide nanoparticles for targeting macrophages in the treatment of rheumatoid arthritis. J Nanobiotechnology. 2024;22:103. doi: 10.21203/rs.3.rs-3467741/v1

 

  1. Yao Q, Wu X, Tao C, et al. Osteoarthritis: Pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther. 2023;8:56. doi: 10.1038/s41392-023-01330-w

 

  1. Ding Q, Hu W, Wang R, et al. Signaling pathways in rheumatoid arthritis: Implications for targeted therapy. Signal Transduct Target Ther. 2023;8:68. doi: 10.1038/s41392-023-01331-9

 

  1. Chen Y, Xiao H, Liu Z, et al. Sirt1: An increasingly interesting molecule with a potential role in bone metabolism and osteoporosis. Biomolecules. 2024;14:970.

 

  1. Mohd Isa IL, Teoh SL, Mohd Nor NH, Mokhtar SA. Discogenic low back pain: Anatomy, pathophysiology and treatments of intervertebral disc degeneration. Int J Mol Sci. 2022;24:208. doi: 10.3390/ijms24010208

 

  1. Loreti M, Sacco A. The jam session between muscle stem cells and the extracellular matrix in the tissue microenvironment. NPJ Regen Med. 2022;7:16. doi: 10.1038/s41536-022-00204-z

 

  1. Zheng L, Chen Y, Gu X, et al. Co-delivery of drugs by adhesive transdermal patches equipped with dissolving microneedles for the treatment of rheumatoid arthritis. J Control Release. 2024;365:274-285. doi: 10.1016/j.jconrel.2023.11.029

 

  1. Hu S, Zhu M, Xing H, et al. Thread-structural microneedles loaded with engineered exosomes for annulus fibrosus repair by regulating mitophagy recovery and extracellular matrix homeostasis. Bioact Mater. 2024;37:1-13. doi: 10.1016/j.bioactmat.2024.03.006

 

  1. Zhang C, Jia S, Huang J, et al. A carbonized wormwood modified photothermal microneedle patch for the repair of damaged skeletal muscles. J Mater Chem B. 2021;9:8014-8020. doi: 10.1039/d1tb00610j

 

  1. Arden NK, Perry TA, Bannuru RR, et al. Non-surgical management of knee osteoarthritis: Comparison of ESCEO and OARSI 2019 guidelines. Nat Rev Rheumatol. 2021;17:59-66. doi: 10.1038/s41584-020-00523-9

 

  1. Jones IA, Togashi R, Wilson ML, Heckmann N, Vangsness CT Jr. Intra-articular treatment options for knee osteoarthritis. Nat Rev Rheumatol. 2019;15:77-90. doi: 10.1038/s41584-018-0123-4

 

  1. Zhou P, Chen C, Yue X, et al. Strategy for osteoarthritis therapy: Improved the delivery of triptolide using liposome-loaded dissolving microneedle arrays. Int J Pharm. 2021;609:121211. doi: 10.1016/j.ijpharm.2021.121211

 

  1. Li J, Tian X, Wang K, Jia Y, Ma F. Transdermal delivery of celecoxib and α-linolenic acid from microemulsion-incorporated dissolving microneedles for enhanced osteoarthritis therapy. J Drug Target. 2023;31:206-216. doi: 10.1080/1061186x.2022.2123492

 

  1. Chattopadhyay H, Auddy B, Sur T, Gupta M, Datta S. Transdermal co-delivery of glucosamine sulfate and diacerein for the induction of chondroprotection in experimental osteoarthritis. Drug Deliv Transl Res. 2020;10:1327-1340. doi: 10.1007/s13346-019-00701-7

 

  1. Abdelbari MA, El-Gazar AA, Abdelbary AA, Elshafeey AH, Mosallam S. Brij® integrated bilosomes for improving the transdermal delivery of niflumic acid for effective treatment of osteoarthritis: In vitro characterization, ex vivo permeability assessment, and in vivo study. Int J Pharm. 2023;640:123024. doi: 10.1016/j.ijpharm.2023.123024

 

  1. Weyand CM, Goronzy JJ. The immunology of rheumatoid arthritis. Nat Immunol. 2021;22:10-18.

 

  1. Komatsu N, Takayanagi H. Mechanisms of joint destruction in rheumatoid arthritis - immune cell-fibroblast-bone interactions. Nat Rev Rheumatol. 2022;18:415-429. doi: 10.1038/s41584-022-00793-5

 

  1. Di Matteo A, Bathon JM, Emery P. Rheumatoid arthritis. Lancet. 2023;402:2019-2033. doi: 10.1016/s0140-6736(23)01525-8

 

  1. Du G, He P, Zhao J, et al. Polymeric microneedle-mediated transdermal delivery of melittin for rheumatoid arthritis treatment. J Control Release. 2021;336:537-548. doi: 10.1016/j.jconrel.2021.07.005

 

  1. Chen G, Hao B, Ju D, et al. Pharmacokinetic and pharmacodynamic study of triptolide-loaded liposome hydrogel patch under microneedles on rats with collagen-induced arthritis. Acta Pharm Sin B. 2015;5:569-576. doi: 10.1016/j.apsb.2015.09.006

 

  1. Hua P, Liang R, Yang S, Tu Y, Chen M. Microneedle-assisted dual delivery of PUMA gene and celastrol for synergistic therapy of rheumatoid arthritis through restoring synovial homeostasis. Bioact Mater. 2024;36:83-95. doi: 10.1016/j.bioactmat.2024.02.030

 

  1. Adami G, Fassio A, Rossini M, et al. Bone loss in inflammatory rheumatic musculoskeletal disease patients treated with low-dose glucocorticoids and prevention by anti-osteoporosis medications. Arthritis Rheumatol. 2023;75:1762-1769. doi: 10.1002/art.42529

 

  1. Händel MN, Cardoso I, von Bülow C, et al. Fracture risk reduction and safety by osteoporosis treatment compared with placebo or active comparator in postmenopausal women: Systematic review, network meta-analysis, and meta-regression analysis of randomised clinical trials. BMJ. 2023;381:e068033. doi: 10.3410/f.742633292.793599891

 

  1. Fuggle NR, Cooper C, Harvey NC, et al. Assessment of cardiovascular safety of anti-osteoporosis drugs. Drugs. 2020;80:1537-1552.

 

  1. Sultana N, Ali A, Waheed A, et al. Dissolving microneedle transdermal patch loaded with Risedronate sodium and ursolic acid bipartite nanotransfersomes to combat osteoporosis: Optimization, characterization, in vitro and ex vivo assessment. Int J Pharm. 2023;644:123335. doi: 10.1016/j.ijpharm.2023.123335

 

  1. Pasqualone M, Andreetta HA, Cortizo MS. Risedronate transdermal delivery system based on a fumaric copolymer for therapy of osteoporosis. Mater Sci Eng C Mater Biol Appl. 2017;76:652-658. doi: 10.1016/j.msec.2017.03.147

 

  1. Terutsuki D, Segawa R, Kusama S, Abe H, Nishizawa M. Frustoconical porous microneedle for electroosmotic transdermal drug delivery. J Control Release. 2023;354:694-700. doi: 10.1016/j.jconrel.2023.01.055

 

  1. Parisien M, Lima LV, Dagostino C, et al. Acute inflammatory response via neutrophil activation protects against the development of chronic pain. Sci Transl Med. 2022;14:eabj9954.

 

  1. Evans L, O’Donohoe T, Morokoff A, Drummond K. The role of spinal surgery in the treatment of low back pain. Med J Aust. 2023;218:40-45. doi: 10.5694/mja2.51788

 

  1. George SZ, Fritz JM, Silfies SP, et al. Interventions for the management of acute and chronic low back pain: Revision 2021. J Orthop Sports Phys Ther. 2021;51:CPG1-CPG60.

 

  1. Santana JA, Klass S, Felix ER. The efficacy, effectiveness and safety of 5% transdermal lidocaine patch for chronic low back pain: A narrative review. PM R. 2020;12:1260-1267. doi: 10.1002/pmrj.12366

 

  1. Romualdi P, Santi P, Candeletti S. Alghedon fentanyl transdermal system. Minerva Med. 2017;108:169-175. doi: 10.23736/s0026-4806.16.04930-2

 

  1. Yarlas A, Miller K, Wen W, et al. A randomized, placebo-controlled study of the impact of the 7-day buprenorphine transdermal system on health-related quality of life in opioid-naïve patients with moderate-to-severe chronic low back pain. J Pain. 2013;14:14-23. doi: 10.1016/j.jpain.2012.09.016

 

  1. Pergolizzi JV Jr., Raffa RB, Fleischer C, Zampogna G, Taylor R Jr. Management of moderate to severe chronic low back pain with buprenorphine buccal film using novel bioerodible mucoadhesive technology. J Pain Res. 2016;9:909-916. doi: 10.2147/jpr.s87952

 

  1. Langston PK, Mathis D. Immunological regulation of skeletal muscle adaptation to exercise. Cell Metab. 2024;36:1175-1183. doi: 10.1016/j.cmet.2024.04.001

 

  1. Chen W, You W, Valencak TG, Shan T. Bidirectional roles of skeletal muscle fibro-adipogenic progenitors in homeostasis and disease. Ageing Res Rev. 2022;80:101682. doi: 10.1016/j.arr.2022.101682

 

  1. Chazaud B. Inflammation and skeletal muscle regeneration: Leave it to the macrophages! Trends Immunol. 2020;41:481-492.

 

  1. Shengchen W, Jing L, Yujie Y, Yue W, Shiwen X. Polystyrene microplastics-induced ROS overproduction disrupts the skeletal muscle regeneration by converting myoblasts into adipocytes. J Hazard Mater. 2021;417:125962. doi: 10.1016/j.jhazmat.2021.125962

 

  1. Sousa Filho LF, Barbosa Santos MM, Menezes PP, Lima BS, Souza Araújo AA, de Oliveira ED. A novel quercetin/β-cyclodextrin transdermal gel, combined or not with therapeutic ultrasound, reduces oxidative stress after skeletal muscle injury. RSC Adv. 2021;11:27837-27844. doi: 10.1039/d1ra04708f

 

  1. Kong WH, Sung DK, Kim H, et al. Self-adjuvanted hyaluronate-- antigenic peptide conjugate for transdermal treatment of muscular dystrophy. Biomaterials. 2016;81:93-103. doi: 10.1016/j.biomaterials.2015.12.007

 

  1. Zhang Y, Li F, Ya S, et al. An iron oxide nanoparticle-based transdermal nanoplatform for dual-modal imaging-guided chemo-photothermal therapy of superficial tumors. Acta Biomater. 2021;130:473-484. doi: 10.1016/j.actbio.2021.05.033

 

  1. Yekrang J, Gholam Shahbazi N, Rostami F, Ramyar M. A novel transdermal delivery route for energy supplements: Electrospun chitosan/polyvinyl alcohol nanofiber patches loaded with vitamin B12. Int J Biol Macromol. 2023;230:123187. doi: 10.1016/j.ijbiomac.2023.123187

 

  1. Guo P, Huang C, Yang Q, et al. Advances in formulations of microneedle system for rheumatoid arthritis treatment. Int J Nanomedicine. 2023;18:7759-7784. doi: 10.2147/ijn.s435251

 

  1. Vora LK, Sabri AH, Naser Y, et al. Long-acting microneedle formulations. Adv Drug Del Rev. 2023;201:115055.

 

  1. Iacob AT, Lupascu FG, Apotrosoaei M, et al. Recent biomedical approaches for chitosan based materials as drug delivery nanocarriers. Pharmaceutics. 2021;13:587. doi: 10.3390/pharmaceutics13040587

 

  1. Goh M, Du M, Peng WR, Saw PE, Chen Z. Advancing burn wound treatment: Exploring hydrogel as a transdermal drug delivery system. Drug Deliv. 2024;31:2300945. doi: 10.1080/10717544.2023.2300945

 

  1. Sofi HS, Abdal-Hay A, Ivanovski S, Zhang YS, Sheikh FA. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: Current status and future perspectives. Mater Sci Eng C Mater Biol Appl. 2020;111:110756. doi: 10.1016/j.msec.2020.110756

 

  1. Phatale V, Vaiphei KK, Jha S, Patil D, Agrawal M, Alexander A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J Control Release. 2022;351:361-380.doi: 10.1016/j.jconrel.2022.09.025

 

  1. Qu F, Geng R, Liu Y, Zhu J. Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treatment. Theranostics. 2022;12:3372-3406. doi: 10.7150/thno.69999

 

  1. Cao J, Su J, An M, et al. Novel DEK-targeting aptamer delivered by a hydrogel microneedle attenuates collagen-induced arthritis. Mol Pharm. 2021;18:305-316. doi: 10.1021/acs.molpharmaceut.0c00954.s001

 

  1. Abd-El-Azim H, Abbas H, El Sayed NS, Fayez AM, Zewail M. Non-invasive management of rheumatoid arthritis using hollow microneedles as a tool for transdermal delivery of teriflunomide loaded solid lipid nanoparticles. Int J Pharm. 2023;644:123334. doi: 10.1016/j.ijpharm.2023.123334

 

  1. Chu PC, Liao MH, Liu MG, Li CZ, Lai PS. Key Transdermal patch using cannabidiol-loaded nanocarriers with better pharmacokinetics in vivo. Int J Nanomedicine. 2024;19:4321-4337. doi: 10.2147/ijn.s455032

 

  1. Kolahi Azar H, Hajian Monfared M, Seraji AA, et al. Integration of polysaccharide electrospun nanofibers with microneedle arrays promotes wound regeneration: A review. Int J Biol Macromol. 2024;258:128482. doi: 10.1016/j.ijbiomac.2023.128482

 

  1. Li M, Cui H, Cao Y, et al. Deep eutectic solvents-Hydrogels for the topical management of rheumatoid arthritis. J Control Release. 2023;354:664-679. doi: 10.1016/j.jconrel.2023.01.050

 

  1. Lem O, Gangurde P, Koivuniemi A, et al. Far-red light-triggered cargo release from liposomes bound to a photosensitizer-cellulose nanofiber hydrogel. Carbohydr Polym. 2024;336:122134. doi: 10.26434/chemrxiv-2023-8vnmw

 

  1. Yu DG, Yu JH, Chen L, Williams GR, Wang X. Modified coaxial electrospinning for the preparation of high-quality ketoprofen-loaded cellulose acetate nanofibers. Carbohydr Polym. 2012;90:1016-1023. doi: 10.1016/j.carbpol.2012.06.036

 

  1. Teng G, Zhang X, Zhang C, et al. Lappaconitine trifluoroacetate contained polyvinyl alcohol nanofibrous membranes: Characterization, biological activities and transdermal application. Mater Sci Eng C Mater Biol Appl. 2020;108:110515. doi: 10.1016/j.msec.2019.110515

 

  1. Elshabrawy HA, Abo Dena AS, El-Sherbiny IM. Triple-layered platform utilizing electrospun nanofibers and 3D-printed sodium alginate-based hydrogel for effective topical treatment of rheumatoid arthritis. Int J Biol Macromol. 2024;259:129195. doi: 10.1016/j.ijbiomac.2023.129195

 

  1. Noreen S, Ma JX, Saeed M, et al. Natural polysaccharide-based biodegradable polymeric platforms for transdermal drug delivery system: A critical analysis. Drug Deliv Transl Res. 2022;12:2649-2666. doi: 10.1007/s13346-022-01152-3

 

  1. Dabholkar N, Gorantla S, Waghule T, et al. Biodegradable microneedles fabricated with carbohydrates and proteins: Revolutionary approach for transdermal drug delivery. Int J Biol Macromol. 2021;170:602-621. doi: 10.1016/j.ijbiomac.2020.12.177
Conflict of interest
There are no conflicts of interest.
Share
Back to top