·
REVIEW
·

Design strategy primer for organ-on-chips

Ting Cao1,2,3# Peicheng Xu3,4# Chen Yang3 Yu Chen1,2 Yongcheng Wang1,5* Jiayu Zhang6* Fangfu Ye3,7*
Show Less
1 Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
2 Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, Zhejiang Province, China
3 Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
4 Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
5 Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang Province, China
6 School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong Province, China
7 Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, China
BMT 2025 , 6(3), 250–264; https://doi.org/10.12336/bmt.24.00070
Submitted: 14 October 2024 | Revised: 12 November 2024 | Accepted: 22 April 2025 | Published: 22 September 2025
Copyright © 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Organ-on-a-chip (OoC) has emerged as a revolutionary technique in recent decades, capable of replicating essential aspects of physiological and pathophysiological processes of human organs in vitro. Serving as an effective tissue culture method for creating digital twins, OoCs show significant promise and have found applications in disease modelling, drug screening, and tissue engineering. However, there has been a lack of emphasis on the fundamental design principles of OoCs in existing literature, a crucial aspect that cannot be overlooked, especially for beginners venturing into the realm of OoCs. Therefore, this paper endeavors to provide a comprehensive overview by delving into the historical development of OoCs, outlining the characteristics of their scaffolds, presenting design strategies for both conceptualisation and fabrication processes, and offering a detailed description of design mechanisms and guidelines based on recent research publications. Furthermore, it explores future prospects and challenges within the OoC domain. Serving as a foundational guide for those new to OoC exploration, this paper aims to furnish a thorough introduction to the fabrication and design strategies employed in OoCs.

Keywords
Design strategies
Guideline
Organ-on-a-chip
Scaffold characteristics
Funding
This work was supported by the National Key Research and Development Program of China (No. 2022YFA1405002), the National Natural Science Foundation of China (Nos. 12325405, T2221001, 32400074) and Seed Funding of the First Affiliated Hospital, Zhejiang University School of Medicine (No. BQD2319).
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

  1. Alonso-Roman R, Mosig AS, Figge MT, et al. Organ-on-chip models for infectious disease research. Nat Microbiol. 2024;9:891-904. doi: 10.1038/s41564-024-01645-6

 

  1. Möller J, Pörtner R. Digital twins for tissue culture techniques–concepts expectations and state of the art. Processes. 2021;9:447. doi: 10.15480/882.3387

 

  1. Zhu Y, Kong B, Liu R, Zhao Y. Developing biomedical engineering technologies for reproductive medicine. Smart Med. 2022;1:e20220006. doi: 10.1002/SMMD.20220006

 

  1. Pattanayak P, Singh SK, Gulati M, et al. Microfluidic chips: Recent advances critical strategies in design applications and future perspectives. Microfluid Nanofluidics. 2021;25:99. doi: 10.1007/s10404-021-02502-2

 

  1. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328:1662-1668. doi: 10.1126/science.1188302

 

  1. Sun L, Chen H, Xu D, Liu R, Zhao Y. Developing organs-on-chips for biomedical applications. Smart Med. 2024;3:e20240009. doi: 10.1002/SMMD.20240009

 

  1. Sun L, Bian F, Xu D, Luo Y, Wang Y, Zhao Y. Tailoring biomaterials for biomimetic organs-on-chips. Mater Horiz. 2023;10:4724-4745. doi: 10.1039/d3mh00755c

 

  1. Tawade P, Mastrangeli M. Integrated electrochemical and optical biosensing in organs-on-chip. ChemBioChem. 2024;25:e202300560. doi: 10.1002/cbic.202300560

 

  1. Tajeddin A, Mustafaoglu N. Design and fabrication of organ-on-chips: Promises and challenges. Micromachines (Basel). 2021;12:1443. doi: 10.3390/mi12121443

 

  1. Sin A, Chin KC, Jamil MF, Kostov Y, Rao G, Shuler ML. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol Prog. 2004;20:338-345. doi: 10.1021/bp034077d

 

  1. Dasgupta Q, Jiang A, Wen AM, et al. A human lung alveolus-on-a-chip model of acute radiation-induced lung injury. Nat Commun. 2023;14:6506 doi: 10.1038/s41467-023-42171-z
  2. Si L, Bai H, Rodas M, et al. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng. 2021;5:815-829. doi: 10.1038/s41551-021-00718-9

 

  1. Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA. Organs-on-chips: Into the next decade. Nat Rev Drug Discov. 2021;20:345-361. doi: 10.1038/s41573-020-0079-3

 

  1. Group of Expert Consensus of Clinical Application about Tumor Precision Therapy Guided by Organoid-based Drug Sensitivity Testing. Expert consensus of clinical application about tumor precision therapy guided by organoid-based drug sensitivity testing (2022 edition). Zhongguo Aizheng Fangzhi Zazhi. 2022;14:234-239.

 

  1. Ingber DE. Human organs-on-chips for disease modelling drug development and personalized medicine. Nat Rev Genet. 2022;23:467-491. doi: 10.1038/s41576-022-00466-9

 

  1. Jang KJ, Mehr AP, Hamilton GA, et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol (Camb). 2013;5:1119-1129. doi: 10.1039/c3ib40049b

 

  1. Benam KH, Villenave R, Lucchesi C, et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods. 2016;13:151-157. doi: 10.1038/nmeth.3697

 

  1. Jang KJ, Otieno MA, Ronxhi J, et al. Reproducing human and cross-species drug toxicities using a liver-chip. Sci Transl Med. 2019;11:eaax5516. doi: 10.1126/scitranslmed.aax5516

 

  1. Jalili-Firoozinezhad S, Gazzaniga FS, Calamari EL, et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat Biomed Eng. 2019;3:520-531. doi: 10.1038/s41551-019-0397-0

 

  1. Lindner N, Mejia-Wille A, Fritschen A, Blaeser A. Development of a robotic-assisted handling and manipulation system for the high-scale bioproduction of 3D-bioprinted organ-on-a-chip devices. HardwareX. 2024;19:e00572. doi: 10.1016/j.ohx.2024.e00572

 

  1. Gautier LJC. CRISPR in 3D: Innovations in disease modelling and personalized medicine. Biotechniques. 2024;76:473-478. doi: 10.1080/07366205.2024.2418748

 

  1. Żuchowska A, Baranowska P, Flont M, Brzózka Z, Jastrzębska E. Review: 3D cell models for organ-on-a-chip applications. Anal Chim Acta. 2024;1301:342413. doi: 10.1016/j.aca.2024.342413

 

  1. Mondal MIH. Cellulose-based Superabsorbent Hydrogels. Cham: Springer Cham; 2019.

 

  1. Yin H, Wang Y, Liu N, et al. Advances in the model structure of in vitro vascularized organ-on-a-chip. Cyborg Bionic Syst. 2024;5:0107. doi: 10.34133/cbsystems.0107

 

  1. Tronolone JJ, Mohamed N, Jain A. Engineering lymphangiogenesis-on-chip: The independent and cooperative regulation by biochemical factors gradients and interstitial fluid flow. Adv Biol (Weinh). 2024;8:e2400031. doi: 10.1002/adbi.202400031

 

  1. Song K, Zu X, Du Z, Hu Z, Wang J, Li J. Diversity models and applications of 3D breast tumor-on-a-chip. Micromachines (Basel). 2021;12:814. doi: 10.3390/mi12070814

 

  1. Moses SR, Adorno JJ, Palmer AF, Song JW. Vessel-on-a-chip models for studying microvascular physiology transport and function in vitro. Am J Physiol Cell Physiol. 2021;320:C92-C105. doi: 10.1152/ajpcell.00355.2020

 

  1. De Roode KE, Hashemi K, Verdurmen WPR, Brock R. Tumor-on-a-chip models for predicting in vivo nanoparticle behavior. Small. 2024;20:e2402311. doi: 10.1002/smll.202402311

 

  1. Zhao H, Chappell JC. Microvascular bioengineering: A focus on pericytes. J Biol Eng. 2019;13:26. doi: 10.1186/s13036-019-0158-3

 

  1. Agarwal SS, Cortes-Medina M, Holter JC, et al. Rapid low-cost assembly of modular microvessel-on-a-chip with benchtop xurography. Lab Chip. 2024;24:5065-5076. doi: 10.1039/D4LC00565A

 

  1. Jain A, van der Meer AD, Papa AL, et al. Assessment of whole blood thrombosis in a microfluidic device lined by fixed human endothelium. Biomed Microdevices. 2016;18:73. doi: 10.1007/s10544-016-0095-6

 

  1. Bischel LL, Lee S H, Beebe DJ. A practical method for patterning lumens through ECM hydrogels via viscous finger patterning. J Lab Autom. 2012;17:96-103. doi: 10.1177/2211068211426694

 

  1. Delannoy E, Tellier G, Cholet J, Leroy AM, Treizebré A, Soncin F. Multi-layered human blood vessels-on-chip design using double viscous finger patterning. Biomedicines. 2022;10:797. doi: 10.3390/biomedicines10040797

 

  1. Mandrycky C, Hadland B, Zheng Y. 3D curvature-instructed endothelial flow response and tissue vascularization. Sci Adv. 2020;6:eabb3629. doi: 10.1126/sciadv.abb3629

 

  1. Franco C, Gerhardt H. Tissue engineering: Blood vessels on a chip. Nature. 2012;488:465-466. doi: 10.1038/488465a

 

  1. Zheng Y, Chen J, Craven M, et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci U S A. 2012;109:9342-9347. doi: 10.1073/pnas.1201240109

 

  1. Guo X, Sun L, Xu D, Zhao Y. Structural color heart-on-a-chip for evaluating the myocardial protection effects of traditional Chinese medicine. Chem Eng J. 2025;503:158261. doi: 10.1016/j.cej.2024.158261

 

  1. Kennedy JI, Davies SP, Hewett PW, et al. Organ-on-a-chip for studying immune cell adhesion to liver sinusoidal endothelial cells: The potential for testing immunotherapies and cell therapy trafficking. Front Cell Dev Biol. 2024;12:1359451. doi: 10.3389/fcell.2024.1359451

 

  1. Zhang M, Xu C, Jiang L, Qin J. A 3D human lung-on-a-chip model for nanotoxicity testing. Toxicol Res (Camb). 2018;7:1048-1060. doi: 10.1039/c8tx00156a

 

  1. You Y, Zhang C, Guo Z, et al. Lung-on-a-chip composed of styrene-butadiene-styrene nano-fiber/porous PDMS composite membranes with cyclic triaxial stimulation. Microfluid Nanofluid. 2024;28:45. doi: 10.1007/s10404-024-02739-7

 

  1. Liu J, Du Y, Xiao X, Tan D, He Y, Qin L. Construction of in vitro liver-on-a-chip models and application progress. Biomed Eng Online. 2024;23:33. doi: 10.1186/s12938-024-01226-y

 

  1. Huang W, Chen YY, He FF, Zhang C. Revolutionizing nephrology research: Expanding horizons with kidney-on-a-chip and beyond. Front Bioeng Biotechnol. 2024;12:1373386. doi: 10.3389/fbioe.2024.1373386

 

  1. Bannerman D, Pascual-Gil S, Wu Q, et al. Heart-on-a-chip model of epicardial-myocardial interaction in ischemia reperfusion injury. Adv Healthc Mater. 2024;13:e2302642. doi: 10.1002/adhm.202302642

 

  1. Du C, Liu J, Liu S, et al. Bone and joint-on-chip platforms: Construction strategies and applications. Small Methods. 2024;8:e2400436. doi: 10.1002/smtd.202400436

 

  1. Pries AR, Secomb TW. Blood flow in microvascular networks. Compr Physiol. 2011;9:3-36.

 

  1. Wufuer M, Lee G, Hur W, et al. Skin-on-a-chip model simulating inflammation edema and drug-based treatment. Sci Rep. 2016;6:37471. doi: 10.1038/srep37471

 

  1. Song H, Hong Y, Lee H. Rapid automated production of tubular 3D intestine-on-a-chip with diverse cell types using coaxial bioprinting. Lab Chip. 2024;25:90-101. doi: 10.1039/d4lc00731j

 

  1. Ahn J, Yoon MJ, Hong SH, et al. Three-dimensional microengineered vascularised endometrium-on-a-chip. Hum Reprod. 2021;36:2720-2731. doi: 10.1093/humrep/deab186

 

  1. Lee J, Kim Y, Jung HI, Lim J, Kwak BS. Channel-assembling tumor microenvironment on-chip for evaluating anticancer drug efficacy. J Control Release. 2025;377:376-384. doi: 10.1016/j.jconrel.2024.11.030

 

  1. Libet PA, Polynkin LY, Saridis MR, et al. A four-channel microfluidic model of the blood–brain and blood–cerebrospinal fluid barriers: Fluid dynamics analysis. Micro Nano Syst Lett. 2024;12:28. doi: 10.1186/s40486-024-00219-9

 

  1. Ronaldson-Bouchard K, Teles D, Yeager K, et al. A multi-organ chip with matured tissue niches linked by vascular flow. Nat Biomed Eng. 2022;6:351-371. doi: 10.1038/s41551-022-00882-6

 

  1. Rajan SAP, Aleman J, Wan M, et al. Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform. Acta Biomater. 2020;106:124-135. doi: 10.1016/j.actbio.2020.02.015

 

  1. Park SE, Georgescu A, Huh D. Organoids-on-a-chip. Science. 2019;364:960-965. doi: 10.1126/science.aaw7894

 

  1. Mao J, Saiding Q, Qian S, et al. Reprogramming stem cells in regenerative medicine. Smart Med. 2022;1:e20220005. doi: 10.1002/SMMD.20220005

 

  1. Qian S, Mao J, Liu Z, et al. Stem cells for organoids. Smart Med. 2022;1:e20220007. doi: 10.1002/SMMD.20220007

 

  1. Wang Y, Wang L, Zhu Y, Qin J. Human brain organoid-on-a-chip to model prenatal nicotine exposure. Lab Chip. 2018;18:851-860. doi: 10.1039/C7LC01084B

 

  1. Hou Y, Gao Z, Tu P, Ai X, Jiang Y. Establishment of an idiosyncratic drug-induced liver injury model on a stacked array chip for identification of CCL5-mediated paracrine dynamics. Anal Chem. 2024;96:19370-19377. doi: 10.1021/acs.analchem.4c03552

 

  1. Corral-Nájera K, Chauhan G, Serna-Saldívar SO, Martínez-Chapa SO, Aeinehvand MM. Polymeric and biological membranes for organ-on-a-chip devices. Microsyst Nanoeng. 2023;9:107.doi: 10.1038/s41378-023-00579-z

 

  1. Radisic M, Loskill P. Beyond PDMS and membranes: New materials for organ-on-a-chip devices. ACS Biomater Sci Eng. 2021;7:2861-2863. doi: 10.1021/acsbiomaterials.1c00831

 

  1. Pasman T, Grijpma D, Stamatialis D, Poot A. Flat and microstructured polymeric membranes in organs-on-chips. J R Soc Interface. 2018;15:20180351. doi: 10.1098/rsif.2018.0351

 

  1. Liu H, Wang Y, Cui K, Guo Y, Zhang X, Qin J. Advances in hydrogels in organoids and organs-on-a-chip. Adv Mater. 2019;31:e1902042. doi: 10.1002/adma.201902042

 

  1. Radhakrishnan J, Subramanian A, Krishnan UM, Sethuraman S. Injectable and 3D bioprinted polysaccharide hydrogels: From cartilage to osteochondral tissue engineering. Biomacromolecules. 2017;18:1-26. doi: 10.1021/acs.biomac.6b01619

 

  1. Liaw CY, Ji S, Guvendiren M. Engineering 3D hydrogels for personalized in vitro human tissue models. Adv Healthc Mater. 2018;7:1701165. doi: 10.1002/adhm.201701165

 

  1. Arık YB, de Sa Vivas A, Laarveld D, van Laar N, Gemser J, et al. Collagen I based enzymatically degradable membranes for organ-on-a-chip barrier models. ACS Biomater Sci Eng. 2021;7:2998-3005. doi: 10.1021/acsbiomaterials.0c00297

 

  1. Gjorevski N, Sachs N, Manfrin A, et al. Designer matrices for intestinal stem cell and organoid culture. Nature. 2016;539:560-564. doi: 10.1038/nature20168

 

  1. Sun AX, Lin H, Fritch MR, et al. Chondrogenesis of human bone marrow mesenchymal stem cells in 3-dimensional photocrosslinked hydrogel constructs: Effect of cell seeding density and material stiffness. Acta Biomater. 2017;58:302-311. doi: 10.1016/j.actbio.2017.06.016

 

  1. Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication. 2015;7:045009. doi: 10.1088/1758-5090/7/4/045009

 

  1. Wang Z, Lee SJ, Cheng HJ, Yoo JJ, Atala A. 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater. 2018;70:48-56. doi: 10.1016/j.actbio.2018.02.007

 

  1. van Meer BJ, de Vries H, Firth KSA, et al. Small molecule absorption by PDMS in the context of drug response bioassays. Biochem Biophys Res Commun. 2017;482:323-328. doi: 10.1016/j.bbrc.2016.11.062

 

  1. Toepke MW, Beebe DJ. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip. 2006;6:1484-1486. doi: 10.1039/B612140C

 

  1. Regehr KJ, Domenech M, Koepsel JT, et al. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip. 2009;9:2132-2139. doi: 10.1039/B903043C

 

  1. Moore TA, Brodersen P, Young EWK. Multiple myeloma cell drug responses differ in thermoplastic vs. PDMS microfluidic devices. Anal Chem. 2017;89:11391-11398. doi: 10.1021/acs.analchem.7b02351

 

  1. Hassan S, Heinrich M, Cecen B, Prakash J, Zhang YS. 26 - Biomaterials for on-chip organ systems. In: Vrana NE, Knopf-Marques H, Barthes J, (eds). Biomaterials for Organ and Tissue Regeneration. New Delhi: Woodhead Publishing; 2020. p. 669-707.

 

  1. Hirama H, Satoh T, Sugiura S, et al. Glass-based organ-on-a-chip device for restricting small molecular absorption. J Biosci Bioeng. 2019;127:641-646. doi: 10.1016/j.jbiosc.2018.10.019

 

  1. Wu X, Shi W, Liu X, Gu Z. Recent advances in 3D-printing-based organ-on-a-chip. EngMedicine. 2024;1:100003. doi: 10.1016/j.engmed.2024.100003

 

  1. Schwarz US. Mechanobiology by the numbers: A close relationship between biology and physics. Nat Rev Mol Cell Biol. 2017;18:711-712. doi: 10.1038/nrm.2017.109

 

  1. Charelli LE, Ferreira JPD, Naveira-Cotta CP, Balbino TA. Engineering mechanobiology through organoids-on-chip: A strategy to boost therapeutics. J Tissue Eng Regen Med. 2021;15:883-899. doi: 10.1002/term.3234

 

  1. Safarzadeh M, Richardson LS, Kammala AK, et al. A multi-organ feto-maternal interface organ-on-chip models pregnancy pathology and is a useful preclinical extracellular vesicle drug trial platform. Extracell Vesicle. 2024;3:100035. doi: 10.1016/j.vesic.2024.100035

 

  1. Brasino DSK, Speese SD, Schilling K, Schutt CE, Barton MCA linkable polycarbonate gut microbiome-distal tumor chip platform for interrogating cancer promoting mechanisms. Adv Sci (Weinh). 2024;11:e2309220. doi: 10.1002/advs.202309220

 

  1. Loessberg-Zahl J, Beumer J, van den Berg A, Eijkel JCT, van der Meer AD. Patterning biological gels for 3D cell culture inside microfluidic devices by local surface modification through laminar flow patterning. Micromachines (Basel). 2020;11:1112. doi: 10.3390/mi11121112

 

  1. Tandon I, Woessner AE, Ferreira LA, et al. A three-dimensional valve-on-chip microphysiological system implicates cell cycle progression cholesterol metabolism and protein homeostasis in early calcific aortic valve disease progression. Acta Biomater. 2024;186:167-184. doi: 10.1016/j.actbio.2024.07.036

 

  1. Kaarj K, Yoon JY. Methods of delivering mechanical stimuli to organ-on-a-chip. Micromachines (Basel). 2019;10:700. doi: 10.3390/mi10100700

 

  1. Hoffman BD, Grashoff C, Schwartz MA. Dynamic molecular processes mediate cellular mechanotransduction. Nature. 2011;475:316-323. doi: 10.1038/nature10316

 

  1. Aragona M, Panciera T, Manfrin A, et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell. 2013;154:1047-1059. doi: 10.1016/j.cell.2013.07.042

 

  1. Ingber DE. From tensegrity to human organs-on-chips: Implications for mechanobiology and mechanotherapeutics. Biochem J. 2023;480:243-257. doi: 10.1042/BCJ20220303

 

  1. Zhang Y, Habibovic P. Delivering mechanical stimulation to cells: State of the art in materials and devices design. Adv Mater. 2022;34:e2110267. doi: 10.1002/adma.202110267

 

  1. Thompson CL, Fu S, Knight MM, Thorpe SD. Mechanical stimulation: A crucial element of organ-on-chip models. Front Bioeng Biotechnol. 2020;8:602646. doi: 10.3389/fbioe.2020.602646

 

  1. Fan Y, Jalali A, Chen A, et al. Skeletal loading regulates breast cancer-associated osteolysis in a loading intensity-dependent fashion. Bone Res. 2020;8:9. doi: 10.1038/s41413-020-0083-6

 

  1. Kong M, Lee J, Yazdi IK, et al. Cardiac fibrotic remodeling on a chip with dynamic mechanical stimulation. Adv Healthc Mater. 2019;8:e1801146. doi: 10.1002/adhm.201801146

 

  1. Liu H, MacQueen LA, Usprech JF, et al. Microdevice arrays with strain sensors for 3D mechanical stimulation and monitoring of engineered tissues. Biomaterials. 2018;172:30-40. doi: 10.1016/j.biomaterials.2018.04.041

 

  1. Schlünder K, Cipriano M, Zbinden A, et al. Microphysiological pancreas-on-chip platform with integrated sensors to model endocrine function and metabolism. Lab Chip. 2024;24:2080-2093. doi: 10.1039/d3lc00838j

 

  1. Chen SW, Blazeski A, Zhang S, Shelton SE, Offeddu GS, Kamm RD. Development of a perfusable hierarchical microvasculature-on-a-chip model. Lab Chip. 2023;23:4552-4564. doi: 10.1039/D3LC00512G

 

  1. Lin TR, Yeh SL, Peng CC, Liao WH, Tung YC. Study effects of drug treatment and physiological physical stimulation on surfactant protein expression of lung epithelial cells using a biomimetic microfluidic cell culture device. Micromachines (Basel). 2019;10:400. doi: 10.3390/mi10060400

 

  1. Liu XF, Yu JQ, Dalan R, Liu AQ, Luo KQ. Biological factors in plasma from diabetes mellitus patients enhance hyperglycaemia and pulsatile shear stress-induced endothelial cell apoptosis. Integr Biol (Camb). 2014;6:511-522. doi: 10.1039/c3ib40265g

 

  1. Shao J, Wu L, Wu J, et al. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress. Lab Chip. 2009;9:3118-3125. doi: 10.1039/B909312E

 

  1. Rutkowski JM, Swartz MA. A driving force for change: interstitial flow as a morphoregulator. Trends Cell Biol. 2007;17:44-50. doi: 10.1016/j.tcb.2006.11.007

 

  1. Vivas A, Ijspeert C, Pan JY, et al. Generation and culture of cardiac microtissues in a microfluidic chip with a reversible open top enables electrical pacing dynamic drug dosing and endothelial cell co-culture. Adv Mater Technol. 2022;7:2101355. doi: 10.1002/admt.202101355

 

  1. van der Helm MW, Henry OYF, Bein A, et al. Non-invasive sensing of transepithelial barrier function and tissue differentiation in organs-on-chips using impedance spectroscopy. Lab Chip. 2019;19:452-463. doi: 10.1039/C8LC00129D

 

  1. Pavesi A, Adriani G, Rasponi M, Zervantonakis IK, Fiore GB, Kamm RD. Controlled electromechanical cell stimulation on-a-chip. Sci Rep. 2015;5:11800. doi: 10.1038/srep11800

 

  1. Sontheimer-Phelps A, Chou DB, Tovaglieri A, et al. Human colon-on-a-chip enables continuous in vitro analysis of colon mucus layer accumulation and physiology. Cell Mol Gastroenterol Hepatol. 2020;9:507-526. doi: 10.1016/j.jcmgh.2019.11.008

 

  1. Goyal G, Prabhala P, Mahajan G, et al. Ectopic lymphoid follicle formation and human seasonal influenza vaccination responses recapitulated in an organ-on-a-chip. Adv Sci (Weinh). 2022;9:e2103241. doi: 10.1002/advs.202103241

 

  1. Ewart L, Apostolou A, Briggs SA, et al. Performance assessment and economic analysis of a human liver-chip for predictive toxicology. Commun Med (Lond). 2022;2:154. doi: 10.1038/s43856-022-00209-1

 

  1. Plebani R, Potla R, Soong M, et al. Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip. J Cyst Fibros. 2022;21:606-615. doi: 10.1016/j.jcf.2021.10.004

 

  1. Gulati A, Jorgenson A, Junaid A, Ingber DE. Modeling healthy and dysbiotic vaginal microenvironments in a human vagina-on-a-chip. J Vis Exp. 2024;204:e66486. doi: 10.3791/66486

 

  1. Kim S, Naziripour A, Prabhala P, et al. Direct therapeutic effect of sulfadoxine-pyrimethamine on nutritional deficiency-induced enteric dysfunction in a human intestine chip. EBioMedicine. 2024;99:104921. doi: 10.1016/j.ebiom.2023.104921

 

  1. Izadifar Z, Cotton J, Chen S, et al. Mucus production host-microbiome interactions hormone sensitivity and innate immune responses modeled in human cervix chips. Nat Commun. 2024;15:4578. doi: 10.1038/s41467-024-48910-0

 

  1. Leung CM, de Haan P, Ronaldson-Bouchard K, et al. A guide to the organ-on-a-chip. Nat Rev Methods Primers. 2022;2:33. doi: 10.1038/s43586-022-00118-6

 

  1. Liu H, Su J. Organoid and organoid extracellular vesicles for osteoporotic fractures therapy: Current status and future perspectives. Interdiscip Med. 2023;1:e20230011. doi: 10.1002/INMD.20230011

 

  1. Ramme AP, Koenig L, Hasenberg T, et al. Autologous induced pluripotent stem cell-derived four-organ-chip. Future Sci OA. 2019;5:FSO413. doi: 10.2144/fsoa-2019-0065

 

  1. Pushparaj K, Balasubramanian B, Pappuswamy M, et al. Out of box thinking to tangible science: A benchmark history of 3D bio-printing in regenerative medicine and tissues engineering. Life (Basel). 2023;13:954. doi: 10.3390/life13040954

 

  1. Li Z, Zhao Y, Lv X, Deng Y. Integrated brain on a chip and automated organ-on-chips systems. Interdiscip Med. 2023;1:e20220002. doi: 10.1002/INMD.20220002

 

  1. Junaid A, Tang H, van Reeuwijk A, et al. Ebola hemorrhagic shock syndrome-on-a-chip. iScience. 2020;23:100765. doi: 10.1016/j.isci.2019.100765

 

  1. Kim J, Lee KT, Lee JS, et al. Fungal brain infection modelled in a human-neurovascular-unit-on-a-chip with a functional blood-brain barrier. Nat Biomed Eng. 2021;5:830-846. doi: 10.1038/s41551-021-00743-8

 

  1. Bussooa A, Tubbs E, Revol-Cavalier F, et al. Real-time monitoring of oxygen levels within thermoplastic organ-on-chip devices. Biosens Bioelectron X. 2022;11:100198. doi: 10.1016/j.biosx.2022.100198

 

  1. Rumsey JW, Lorance C, Jackson M, et al. Classical complement pathway inhibition in a “human-on-a-chip” model of autoimmune demyelinating neuropathies. Adv Ther (Weinh). 2022;5:2200030. doi: 10.1002/adtp.202200030

 

  1. Yin J, Zhao M, Xu X, et al. A multicenter randomized open-label phase 2 clinical study of telitacicept in adult patients with generalized myasthenia gravis. Eur J Neurol. 2024;31:e16322. doi: 10.1111/ene.16322
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top