·
REVIEW
·

Nanoformulation-assisted early diagnosis of prostate cancer: Advances and perspectives

Zhiyuan Zhou1,2,3# Mingyu Chang1,2# Jingcheng Lyu1,2# Jianhua Zhao3 Zongwei Wang4 Fengbo Zhang5* Yinong Niu1,2* Boyu Yang1,2*
Show Less
1 Department of Urology, Beijing Friendship hospital, Capital Medical University, Beijing, China
2 Institute of Urology, Beijing Municipal Health Commission, Beijing, China
3 Department of Neurosurgery, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
4 Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
5 Beijing Luhe Hospital, Capital Medical University, Beijing, China
BMT 2025 , 6(3), 232–249; https://doi.org/10.12336/bmt.24.00077
Submitted: 23 October 2024 | Revised: 31 December 2024 | Accepted: 25 February 2025 | Published: 22 September 2025
Copyright © 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Prostate cancer is one of the most common cancers affecting men worldwide. Owing to late diagnosis, the mortality rate associated with prostate cancer remains relatively high. Traditional diagnostic methods are, in most cases, unfriendly to patients or have diagnostic lag defects. Further diagnosis requires prostate biopsy. The most common biomarker is prostate-specific antigen, which is quantified as the content of the prostate health index to describe the risk of prostate cancer. Traditional biochemical analysis methods are costly, time-consuming, and lack specificity. They are also limited by the detection range, preventing high sensitivity. The exploration of novel biomarkers has identified several promising alternatives. The development of integrated nanomaterial technology provides a feasible potential method for the rapid, sensitive and non-invasive determination of these biological markers and assists in the optimisation of imaging diagnosis, which is expected to solve the current challenges in the diagnosis of prostate cancer. This paper reviews the advances in the diagnostic screening and imaging of prostate cancer using nanostructure-based biofunctional sensors, probes and contrast agents such as gold nanoparticles, upconversion nanoparticles, quantum dots, and magnetic nanoparticles. It also highlights the potential of emerging paradigms in nanoarchitectonics to definitive cancer diagnosis.

Keywords
Diagnosis
Nanoparticles
Prostate cancer
Prostate-specific antigen
Funding
This work was supported by the Beijing Municipal Administration of Hospitals Incubating Program (No. PX2025071), the Youth Elite Program of Beijing Friendship Hospital (No. YYQCJH2023-1), the Training Fund for Open Projects at Clinical Institutes and Departments of Capital Medical University (No. CCMU2024ZKYXY017), the Talent Development Plan for the Future in Medical-Engineering Integration by the Beijing Research Association for Chronic Diseases Control and Health Education (BRA-CDCHE) and Zhongguancun Talent Association (ZTA) (No. MBRC0012025016), the Science and Technology Special Program of Xicheng District, Beijing (No. XCSTS-T12024-09), the Beijing Key Clinical Specialty Project (No. 20240930), and Young Elite Scientist Sponsorship Program by CAST (No. YESS20240410).
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

  1. Pinsky PF, Parnes H. Screening for prostate cancer. N Engl J Med. 2023;388:1405-1414. doi: 10.1056/nejmcp2209151

 

  1. Bergengren O, Pekala KR, Matsoukas K, et al. 2022 update on prostate cancer epidemiology and risk factors-a systematic review. Eur Urol. 2023;84:191-206. doi: 10.1016/j.eururo.2023.04.021

 

  1. Sandhu S, Moore CM, Chiong E, Beltran H, Bristow RG, Williams SG. Prostate cancer. Lancet. 2021;398:1075-1090. doi: 10.1016/S0140-6736(21)00950-8

 

  1. Wei JT, Barocas D, Carlsson S, et al. Early detection of prostate cancer: AUA/SUO guideline part I: Prostate cancer screening. J Urol. 2023;210:46-53. doi: 10.1097/JU.0000000000003491

 

  1. Schaeffer EM, Srinivas S, Adra N, et al. Prostate cancer, version 4.2023, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2023;21:1067-1096. doi: 10.6004/jnccn.2023.0050

 

  1. Makarov DV, Loeb S, Getzenberg RH, Partin AW. Biomarkers for prostate cancer. Annu Rev Med. 2009;60:139-151. doi: 10.1146/annurev.med.60.042307.110714

 

  1. Kuligowska E, Barish MA, Fenlon HM, Blake M. Predictors of prostate carcinoma: Accuracy of gray-scale and color Doppler US and serum markers. Radiology. 2001;220:757-764. doi: 10.1148/radiol.2203001179

 

  1. Koo KM, Mainwaring PN, Tomlins SA, Trau M. Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat Rev Urol. 2019;16:302-317. doi: 10.1038/s41585-019-0178-2

 

  1. Lankoff A, Czerwińska M, Kruszewski M. Nanoparticle-based radioconjugates for targeted imaging and therapy of prostate cancer. Molecules. 2023;28:4122. doi: 10.3390/molecules28104122

 

  1. Dehghani P, Karthikeyan V, Tajabadi A, et al. Rapid near-patient impedimetric sensing platform for prostate cancer diagnosis. ACS Omega. 2024;9:14580-14591. doi: 10.1021/acsomega.4c00843

 

  1. Thompson IM, Pauler DK, Goodman PJ, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med. 2004;350:2239-2246. doi: 10.1056/nejmoa031918

 

  1. Thompson IM, Ankerst DP, Chi C, et al. Assessing prostate cancer risk: Results from the prostate cancer prevention trial. J Natl Cancer Inst. 2006;98:529-534. doi: 10.1093/jnci/djj131

 

  1. Funari R, Chu KY, Shen AQ. Multiplexed opto-microfluidic biosensing: Advanced platform for prostate cancer detection. ACS Sens. 2024;9:2596-2604. doi: 10.1021/acssensors.4c00312

 

  1. Yeh IH, Shi HF, Darius E, et al. Plasmonic biochips with enhanced stability in harsh environments for the sensitive detection of prostate-specific antigen. J Mater Chem B. 2024;12:1617-1623. doi: 10.1039/d3tb02303f

 

  1. Gao Y, Wu Y, Huang P, Wu FY. Colorimetric and photothermal immunosensor for sensitive detection of cancer biomarkers based on enzyme-mediated growth of gold nanostars on polydopamine. Anal Chim Acta. 2023;1279:341775. doi: 10.1016/j.aca.2023.341775

 

  1. Felici E, Regiart MD, Pereira SV, et al. Microfluidic platform integrated with carbon nanofibers-decorated gold nanoporous sensing device for serum PSA quantification. Biosensors (Basel). 2023;13:390. doi: 10.3390/bios13030390

 

  1. Turan E, Zengin A, Suludere Z, Kalkan N, Tamer U. Construction of a sensitive and selective plasmonic biosensor for prostate specific antigen by combining magnetic molecularly-imprinted polymer and surface-enhanced Raman spectroscopy. Talanta. 2022;237:122926. doi: 10.1016/j.talanta.2021.122926

 

  1. He W, Liu L, Cao Z, et al. Shrink polymer based electrochemical sensor for point-of-care detection of prostate-specific antigen. Biosens Bioelectron. 2023;228:115193. doi: 10.1016/j.bios.2023.115193

 

  1. Gao X, Niu T, Xia Q, et al. Au-Se bonded nanoprobe for prostate specific antigen detection in serum. Anal Chim Acta. 2022;1210:339852. doi: 10.1016/j.aca.2022.339852

 

  1. Dou Y, Li Z, Su J, Song S. A portable biosensor based on Au nanoflower interface combined with electrochemical immunochromatography for POC detection of prostate-specific antigen. Biosensors (Basel). 2022;12:259. doi: 10.3390/bios12050259

 

  1. Alnaimi A, Al-Hamry A, Makableh Y, Adiraju A, Kanou O. Gold nanoparticles-MWCNT based aptasensor for early diagnosis of prostate cancer. Biosensors (Basel). 2022;12:1130. doi: 10.3390/bios12121130

 

  1. Kekki H, Montoya Perez I, Taimen P, Boström PJ, Gidwani K, Pettersson K. Lectin-nanoparticle concept for free PSA glycovariant providing superior cancer specificity. Clin Chim Acta. 2024;559:119689. doi: 10.1016/j.cca.2024.119689

 

  1. Neves M, Richards SJ, Baker AN, Walker M, Georgiou PG, Gibson MI. Discrimination between protein glycoforms using lectin-functionalised gold nanoparticles as signal enhancers. Nanoscale Horiz. 2023;8:377-382. doi: 10.1039/d2nh00470d

 

  1. Du K, Feng J, Gao X, Zhang H. Nanocomposites based on lanthanide-doped upconversion nanoparticles: Diverse designs and applications. Light Sci Appl. 2022;11:222. doi: 10.1038/s41377-022-00871-z

 

  1. Osuchowski M, Osuchowski F, Latos W, Kawczyk-Krupka A. The use of upconversion nanoparticles in prostate cancer photodynamic therapy. Life (Basel). 2021;11:360. doi: 10.3390/life11040360

 

  1. Li S, Wei X, Li S, Zhu C, Wu C. Up-conversion luminescent nanoparticles for molecular imaging, cancer diagnosis and treatment. Int J Nanomedicine. 2020;15:9431-9445. doi: 10.2147/ijn.s266006

 

  1. Makhneva E, Sklenárová D, Brandmeier JC, et al. Influence of label and solid support on the performance of heterogeneous immunoassays. Anal Chem. 2022;94:16376-16383. doi: 10.1021/acs.analchem.2c03543

 

  1. Hu X, Liao J, Shan H, et al. A novel carboxyl polymer-modified upconversion luminescent nanoprobe for detection of prostate-specific antigen in the clinical gray zonebase by flow immunoassay strip. Methods. 2023;215:10-16. doi: 10.1016/j.ymeth.2023.05.001

 

  1. Chung S, Revia RA, Zhang M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv Mater. 2021;33:e1904362. doi: 10.1002/adma.201904362

 

  1. Sun L, Liu H, Ye Y, et al. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther. 2023;8:418. doi: 10.1038/s41392-023-01642-x

 

  1. Korram J, Anbalagan AC, Banerjee A, Sawant SN. Bio-conjugated carbon dots for the bimodal detection of prostate cancer biomarkers via sandwich fluorescence and electrochemical immunoassays. J Mater Chem B. 2024;12:742-751. doi: 10.1039/d3tb02090h

 

  1. Zhu T, Tang Q, Zeng Y, et al. Sensitive determination of prostate-specific antigen with graphene quantum dot-based fluorescence aptasensor using few-layer V2CTx MXene as quencher. Spectrochim Acta A Mol Biomol Spectrosc. 2023;293:122474. doi: 10.1016/j.saa.2023.122474

 

  1. Min X, Huang S, Yuan C. Dual-color quantum dots nanobeads based suspension microarray for simultaneous detection of dual prostate specific antigens. Anal Chim Acta. 2022;1204:339704. doi: 10.1016/j.aca.2022.339704

 

  1. Ma Z, Guo J, Jiang L, Zhao S. Lateral flow immunoassay (LFIA) for dengue diagnosis: Recent progress and prospect. Talanta. 2024;267:125268. doi: 10.1016/j.talanta.2023.125268

 

  1. Gong H, Gai S, Tao Y, et al. Colorimetric and photothermal dual-modal switching lateral flow immunoassay based on a forced dispersion prussian blue nanocomposite for the sensitive detection of prostate-specific antigen. Anal Chem. 2024;96:8665-8673. doi: 10.1021/acs.analchem.4c00862

 

  1. Wang K, Xing X, Ding Y, et al. A dual-mode immunosensing strategy for prostate specific antigen detection: Integration of resonance Raman scattering and photoluminescence properties of ZnS:Mn2+ nanoprobes. Anal Chim Acta. 2022;1205:339775. doi: 10.1016/j.aca.2022.339775

 

  1. Lichtinghagen R, Musholt PB, Lein M, et al. Different mRNA and protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinases 1 in benign and malignant prostate tissue. Eur Urol. 2002;42:398-406. doi: 10.1016/s0302-2838(02)00324-x

 

  1. Doldi V, Tortoreto M, Colecchia M, et al. Repositioning of antiarrhythmics for prostate cancer treatment: A novel strategy to reprogram cancer-associated fibroblasts towards a tumor-suppressive phenotype. J Exp Clin Cancer Res. 2024;43:161. doi: 10.1186/s13046-024-03081-0

 

  1. Ghosh TN, Rotake DR, Singh SG. 2D vanadium disulfide nanosheets assisted ultrasensitive, rapid, and label-free electrochemical quantification of cancer biomarker (MMP-2). Nanotechnology. 2023;34:395501. doi: 10.1088/1361-6528/acdde9

 

  1. Nolan-Stevaux O, Li C, Liang L, et al. AMG 509 (Xaluritamig) an anti- STEAP1 XmAb 2+1 T-cell redirecting immune therapy with avidity-dependent activity against prostate cancer. Cancer Discov. 2024;14:90-103. doi: 10.1158/2159-8290.cd-23-0984

 

  1. Bhatia V, Kamat NV, Pariva TE, et al. Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy. Nat Commun. 2023;14:2041. doi: 10.1038/s41467-023-37874-2

 

  1. Xu M, Evans L, Bizzaro CL, et al. STEAP1-4 (six-transmembrane epithelial antigen of the prostate 1-4) and their clinical implications for prostate cancer. Cancers (Basel). 2022;14:4034. doi: 10.3390/cancers14164034

 

  1. Carvalho M, Gomes RM, Moreira Rocha S, et al. Development of a novel electrochemical biosensor based on plastic antibodies for detection of STEAP1 biomarker in cancer. Bioelectrochemistry. 2023;152:108461. doi: 10.1016/j.bioelechem.2023.10846

 

  1. Madhu S, Han JH, Jeong CW, Choi J. Sensitive electrochemical sensing platform based on Au nanoflower-integrated carbon fiber for detecting interleukin-6 in human serum. Anal Chim Acta. 2023;1238:340644.] doi: 10.1016/j.aca.2022.340644

 

  1. Chen S, Li Z, Xue R, Huang Z, Jia Q. Confining copper nanoclusters in three dimensional mesoporous silica particles: Fabrication of an enhanced emission platform for “turn off-on” detection of acid phosphatase activity. Anal Chim Acta. 2022;1192:339387. doi: 10.1016/j.aca.2021.339387

 

  1. Dhanapala L, Joseph S, Jones AL, et al. Immunoarray measurements of parathyroid hormone-related peptides combined with other biomarkers to diagnose aggressive prostate cancer. Anal Chem. 2022;94:12788-12797. doi: 10.1021/acs.analchem.2c02648

 

  1. Yu HJ, Jang E, Woo A, et al. Cancer screening through surface-enhanced Raman spectroscopy fingerprinting analysis of urinary metabolites using surface-carbonized silver nanowires on a filter membrane. Anal Chim Acta. 2024;1292:342233. doi: 10.1016/j.aca.2024.342233

 

  1. Hou J, Wang J, Han J, et al. An intelligent ratiometric fluorescent assay based on MOF nanozyme-mediated tandem catalysis that guided by contrary logic circuit for highly sensitive sarcosine detection and smartphone-based portable sensing application. Biosens Bioelectron. 2024;249:116035. doi: 10.1016/j.bios.2024.116035

 

  1. Deng M, Yang H, Zhang H, et al. Portable and rapid dual-biomarker detection using solution-gated graphene field transistors in the accurate diagnosis of prostate cancer. Adv Healthc Mater. 2024;13:e2302117. doi: 10.1002/adhm.202302117

 

  1. Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910-914. doi: 10.1038/nature07762

 

  1. Hora CS, Tavares APM, Carneiro LPT, Ivanou D, Mendes AM, Sales MGF. New autonomous and self-signaling biosensing device for sarcosine detection. Talanta. 2023;257:124340. doi: 10.1016/j.talanta.2023.124340

 

  1. Song P, Shen J, Ye D, et al. Programming bulk enzyme heterojunctions for biosensor development with tetrahedral DNA framework. Nat Commun. 2020;11:838. doi: 10.1038/s41467-020-14664-8

 

  1. Annese VF, Patil SB, Hu C, et al. A monolithic single-chip point-of-care platform for metabolomic prostate cancer detection. Microsyst Nanoeng. 2021;7:21. doi: 10.1038/s41378-021-00243-4

 

  1. Liu P, Sun Q, Gai Z, Yang F, Yang Y. Dual-mode fluorescence and colorimetric smartphone-based sensing platform with oxidation-induced self-assembled nanoflowers for sarcosine detection. Anal Chim Acta. 2024;1306:342586. doi: 10.1016/j.aca.2024.342586

 

  1. Wang L, Zheng S, Chen Y, Li C, Wang F. Construction of fluorescence and colorimetric tandem dual-mode sensor by modulating fluorescence and oxidase-like activity via valence switching of cerium-based coordination polymer nanoparticles for sarcosine detection. Mikrochim Acta. 2023;190:157. doi: 10.1007/s00604-023-05750-x

 

  1. Khachornsakkul K, Leelasattarathkul T. Photothermal biosensing integrated with microfluidic paper-based analytical device for sensitive quantification of sarcosine. Talanta. 2024;271:125628. doi: 10.1016/j.talanta.2024.125628

 

  1. Farokhi S, Roushani M. Flower-like core-shell nanostructures based on natural asphalt coated with Ni-LDH nanosheets as an electrochemical platform for prostate cancer biomarker sensing. Mikrochim Acta. 2023;190:198. doi: 10.1007/s00604-023-05779-y

 

  1. Galey L, Olanrewaju A, Nabi H, Paquette JS, Pouliot F, Audet-Walsh É. Rediscovering citrate as a biomarker for prostate cancer. Nat Rev Urol. 2024;21:573-575. doi: 10.1038/s41585-024-00899-3

 

  1. Bader DA, McGuire SE. Tumour metabolism and its unique properties in prostate adenocarcinoma. Nat Rev Urol. 2020;17:214-231. doi: 10.1038/s41585-020-0288-x

 

  1. Afshary H, Amiri M, Marken F, McKeown NB, Amiri M. ECL sensor for selective determination of citrate ions as a prostate cancer biomarker using polymer of intrinsic microporosity-1 nanoparticles/nitrogen-doped carbon quantum dots. Anal Bioanal Chem. 2023;415:2727-2736. doi: 10.1007/s00216-023-04672-0

 

  1. Marken F, Carta M, McKeown NB. Polymers of intrinsic microporosity in the design of electrochemical multicomponent and multiphase interfaces. Anal Chem. 2021;93:1213-1220. doi: 10.1021/acs.analchem.0c04554

 

  1. Linh VTN, Lee MY, Mun J, et al. 3D plasmonic coral nanoarchitecture paper for label-free human urine sensing and deep learning-assisted cancer screening. Biosens Bioelectron. 2023;224:115076. doi: 10.1016/j.bios.2023.115076

 

  1. Fabris L, Ceder Y, Chinnaiyan AM, et al. The potential of microRNAs as prostate cancer biomarkers. Eur Urol. 2016;70:312-322. doi: 10.1016/j.eururo.2015.12.054

 

  1. Jiang P, Bai Y, Yan L, et al. Nanoarchitectonics-assisted simultaneous fluorescence detection of urinary dual miRNAs for noninvasive diagnosis of prostate cancer. Anal Chem. 2023;95:7676-7684. doi: 10.1021/acs.analchem.3c00701

 

  1. Ivanov YD, Malsagova KA, Goldaeva KV, et al. Nanoribbon biosensor-based detection of microRNA markers of prostate cancer. Sensors (Basel). 2023;23:7527. doi: 10.3390/s23177527

 

  1. Ueno K, Hirata H, Shahryari V, Deng G, et al. microRNA-183 is an oncogene targeting Dkk-3 and SMAD4 in prostate cancer. Br J Cancer. 2013;108:1659-1667. doi: 10.1038/bjc.2013.125

 

  1. Ouyang Y, Gao P, Zhu B, et al. Downregulation of microRNA-429 inhibits cell proliferation by targeting p27Kip1 in human prostate cancer cells. Mol Med Rep. 2015;11:1435-1441. doi: 10.3892/mmr.2014.2782

 

  1. Selth LA, Townley S, Gillis JL, et al. Discovery of circulating microRNAs associated with human prostate cancer using a mouse model of disease. Int J Cancer. 2012;131:652-661. doi: 10.1002/ijc.26405

 

  1. Fredsøe J, Rasmussen AKI, Thomsen AR, et al. Diagnostic and prognostic microRNA biomarkers for prostate cancer in cell-free urine. Eur Urol Focus. 2018;4:825-833. doi: 10.1016/j.euf.2017.02.018

 

  1. Kshirsagar P, Seshacharyulu P, Muniyan S, et al. DNA-gold nanoprobe-based integrated biosensing technology for non-invasive liquid biopsy of serum miRNA: A new frontier in prostate cancer diagnosis. Nanomedicine. 2022;43:102566. doi: 10.1016/j.nano.2022.102566

 

  1. Jiang W, Chen Z, Lu J, Ren X, Ma Y. Ultrasensitive visual detection of miRNA-143 using a CRISPR/Cas12a-based platform coupled with hyperbranched rolling circle amplification. Talanta. 2023;251:123784 doi: 10.1016/j.talanta.2022.123784

 

  1. Li X, Corbett AL, Taatizadeh E, et al. Challenges and opportunities in exosome research-perspectives from biology engineering and cancer therapy. APL Bioeng. 2019;3:011503. doi: 10.1063/1.5087122

 

  1. Lee J, Lee JH, Mondal J, et al. Magnetofluoro-immunosensing platform based on binary nanoparticle-decorated graphene for detection of cancer cell-derived exosomes. Int J Mol Sci. 2022;23:9619. doi: 10.3390/ijms23179619

 

  1. Cheng W, Sun Y, Zhao G, et al. A novel peptide-templated AgNPs nanoprobe for theranostics of prostate cancer. Biosens Bioelectron. 2023;223:114978. doi: 10.1016/j.bios.2022.114978

 

  1. Cun F, Huang Z, Lin Q, et al. Hybridized chain reaction-amplified alkaline phosphatase-induced Ag-shell nanostructure for the sensitive and rapid surface-enhanced raman scattering immunoassay of exosomes. Anal Chem. 2023;95:10025-10033. doi: 10.1021/acs.analchem.3c01337

 

  1. Li Q, Wang Y, Ling L, et al. Rapid and specific detection nanoplatform of serum exosomes for prostate cancer diagnosis. Mikrochim Acta. 2021;188:283. doi: 10.1007/s00604-021-04934-7

 

  1. Li Q, Wang Y, Xue Y, et al. Ultrasensitive analysis of exosomes using a 3D self-assembled nanostructured SiO2 microfluidic chip. ACS Appl Mater Interfaces. 2022;14:14693-14702. doi: 10.1021/acsami.1c22569

 

  1. Wang J, Li L, Li Y, et al. PSMA1-mediated ultrasmall gold nanoparticles facilitate tumor targeting and MR/CT/NIRF multimodal detection of early-stage prostate cancer. Nanomedicine. 2023;47:102617. doi: 10.1016/j.nano.2022.102617

 

  1. Liolios C, Koutsikou TS, Salvanou EA, et al. Synthesis and in vitro proof-of-concept studies on bispecific iron oxide magnetic nanoparticles targeting PSMA and GRP receptors for PET/MR imaging of prostate cancer. Int J Pharm. 2022;624:122008. doi: 10.1016/j.ijpharm.2022.122008

 

  1. Xie W, Gan Y, Zhang Y, et al. Transition-metal-doped hydrophilic ultrasmall iron oxide modulates MRI contrast performance for accurate diagnosis of orthotopic prostate cancer. J Mater Chem B. 2022;10:9613-9621. doi: 10.1039/d2tb01860h

 

  1. Ghorbani F, Aminzadeh B, Borji N, Soudmand S, Montazerabadi A. Molecular MR imaging of prostate cancer by specified iron oxide nanoparticles with PSMA-11 peptides: A preclinical study. J Magn Reson Imaging. 2024;59:2204-2214. doi: 10.1002/jmri.28949

 

  1. Li C, Zhao J, Gao X, et al. Chiral iron oxide supraparticles enable enantiomer-dependent tumor-targeted magnetic resonance imaging. Adv Mater. 2023;35:e2308198. doi: 10.1002/adma.202308198

 

  1. Jo J, Salfi E, Folz J, et al. Photoacoustic spectral analysis for evaluating the aggressiveness of prostate cancer labeled by methylene blue polyacrylamide nanoparticles. Biosensors (Basel). 2023;13:403. doi: 10.3390/bios13030403

 

  1. Martin DT, Lee JS, Liu Q, et al. Targeting prostate cancer with Clostridium perfringens enterotoxin functionalized nanoparticles co-encapsulating imaging cargo enhances magnetic resonance imaging specificity. Nanomedicine. 2022;40:102477. doi: 10.1016/j.nano.2021.102477

 

  1. El Tekle G, Garrett WS. Bacteria in cancer initiation promotion and progression. Nat Rev Cancer. 2023;23:600-618. doi: 10.1038/s41568-023-00594-2

 

  1. Rizzo A, Santoni M, Mollica V, Fiorentino M, Brandi G, Massari F. Microbiota and prostate cancer. Semin Cancer Biol. 2022;86:1058-1065. doi: 10.1016/j.semcancer.2021.09.007

 

  1. Brede CM, Shoskes DA. The etiology and management of acute prostatitis. Nat Rev Urol. 2011;8:207-212. doi: 10.1038/nrurol.2011.22

 

  1. Salachan PV, Rasmussen M, Fredsøe J, Ulhøi B, Borre M, Sørensen KD. Microbiota of the prostate tumor environment investigated by whole-transcriptome profiling. Genome Med. 2022;14:9. doi: 10.1186/s13073-022-01011-3

 

  1. Porter CM, Shrestha E, Peiffer LB, Sfanos KS. The microbiome in prostate inflammation and prostate cancer. Prostate Cancer Prostatic Dis. 2018;21:345-354. doi: 10.1038/s41391-018-0041-1

 

  1. Ncapayi V, Ninan N, Lebepe TC, et al. Diagnosis of prostate cancer and prostatitis using near infra-red fluorescent AgInSe/ZnS quantum dots. Int J Mol Sci. 2021;22:12514. doi: 10.3390/ijms222212514

 

  1. Wang G, Mao X, Wang W, Wang X, Li S, Wang Z. Bioprinted research models of urological malignancy. Exploration (Beijing). 2024;4:20230126. doi: 10.1002/exp.20230126

 

  1. Yang X, Li Y, Liu X, He W, Huang Q, Feng Q. Nanoparticles and their effects on differentiation of mesenchymal stem cells. Biomater Transl. 2020;1:58-68. doi: 10.3877/cma.j.issn.2096-112X.2020.01.006

 

  1. Awiaz G, Lin J, Wu A. Recent advances of Au@Ag core-shell SERS-based biosensors. Exploration (Beijing). 2023;3:20220072. doi: 10.1002/exp.20220072

 

  1. Hu Y, Lv S, Wan J, et al. Recent advances in nanomaterials for prostate cancer detection and diagnosis. J Mater Chem B. 2022;10:4907-4934. doi: 10.1039/d2tb00448h

 

  1. Kim WH, Lee JU, Jeon MJ, Park KH, Sim SJ. Three-dimensional hierarchical plasmonic nano-architecture based label-free surface-enhanced Raman spectroscopy detection of urinary exosomal miRNA for clinical diagnosis of prostate cancer. Biosens Bioelectron. 2022;205:114116. doi: 10.1016/j.bios.2022.114116
Conflict of interest
The authors declare no competing interests.
Share
Back to top