·
ORIGINAL RESEARCH
·

PBVHx-based microspheres for controlled BMP2 release and enhanced bone regeneration in a disuse osteoporosis mouse model

Kewen Zhang1,2# Yanwen Zhou3# Daixu Wei3* Airong Qian4* Xiao Lin1,4*
Show Less
1 Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, Guangdong, China
2 The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen and Longgang District People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
3 Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, China
4 Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
Submitted: 25 June 2025 | Revised: 5 August 2025 | Accepted: 6 August 2025 | Published: 4 September 2025
Copyright © 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Addressing bone defects caused by degenerative diseases, trauma, and cancer through bone tissue engineering remains a significant global health challenge. The osteoinductive properties of bone morphogenetic protein-2 (BMP2) have become a key therapeutic strategy in bone regeneration. However, the development of biodegradable composites that ensure biocompatibility, stability, efficient BMP2 loading, and controlled release remains unresolved. In this study, we designed PBVHx/soy lecithin (SL)/BMP2 controlled-release microspheres (sB2PM) based on the biodegradable material poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PBVHx), incorporating SL to enable sustained BMP2 delivery and enhance capture. sB2PM microspheres exhibited uniform size (approximately 5 μm) and high BMP2 encapsulation efficiency (80.29%) compared to pure PBVHx-based microspheres (pPM). Due to PBVHx’s biodegradability, BMP2 release was primarily degradation-driven, resulting in a controlled biphasic release profile. sB2PM achieved 62.79% cumulative BMP2 release over four weeks and continued to release BMP2 sustainably thereafter. Co-culturing sB2PM microspheres with human bone marrow-derived mesenchymal stem cells (hBMSCs) in a Transwell system showed enhanced cell proliferation, biocompatibility, and collagen secretion. Compared with pPM and B2PM, sB2PM significantly promoted osteogenic differentiation, increased alkaline phosphatase (ALP) activity, and upregulated osteogenic gene expression in hBMSCs, outperforming commercial hydroxyapatite microspheres. In a mouse hindlimb unloading osteoporosis model, micro computed tomography and histological evaluations confirmed that injectable sB2PM microspheres significantly enhanced bone regeneration, collagen secretion, and ALP and runt-related transcription factor 2 protein expression. This study highlights the potential of sB2PM microspheres with controlled BMP2 release for future bone regeneration therapies.

Keywords
Polyhydroxyalkanoates
Osteoporosis
Controlled release microspheres
Bone morphogenetic protein-2
Mesenchymal stem cells
Funding
This work was supported by grants from the National Natural Science Foundation of China (82470926); the Guangdong Basic and Applied Basic Research Foundation (2023A1515030047); the Natural Science Basic Research Plan in Shaanxi Province of China (2024JC-YBMS-605, 2024JC-YBMS-706); the Health Commission of Sichuan Province Medical Science and Technology Program (24WSXT106); the Collaborative Innovation Project of Zigong Medical Big Data and the Artificial Intelligence Research Institute (2023-YGY-1-02); and the Key Science and Technology Plan Project of Zigong (2022ZCNKY07, 2024-NKY-01-01).
Conflict of interest
The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this work.
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

  1. Song S, Guo Y, Yang Y, Fu D. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol Ther. 2022;237:108168. doi: 10.1016/j.pharmthera.2022.108168

 

  1. Lin X, Zhang K, Li Y, et al. High resolution osteoclast-targeted imaging-guided osteoporosis alleviation via persistent luminescence nanocomposite. Chem Eng J. 2024;484:149468. doi: 10.1016/j.cej.2024.149468

 

  1. Bian Y, Hu T, Lv Z, et al. Bone tissue engineering for treating osteonecrosis of the femoral head. Exploration (Beijing). 2023;3(2):20210105. doi: 10.1002/exp.20210105

 

  1. Liu H, Su J. Organoid and organoid extracellular vesicles for osteoporotic fractures therapy: Current status and future perspectives. Interdiscipl Med. 2023;1(3):e20230011. doi: 10.1002/INMD.20230011

 

  1. Xue C, Chen L, Wang N, et al. Stimuli-responsive hydrogels for bone tissue engineering. Biomater Transl. 2024;5(3):257-273. doi: 10.12336/biomatertransl.2024.03.004

 

  1. Hayashi K, Zhang C, Taleb Alashkar AN, Ishikawa K. Carbonate apatite honeycomb scaffold-based drug delivery system for repairing osteoporotic bone defects. ACS Appl Mater Interfaces. 2024;16(35):45956-45968. doi: 10.1021/acsami.4c08047

 

  1. Zhou J, Zhang Z, Joseph J, et al. Biomaterials and nanomedicine for bone regeneration: Progress and future prospects. Exploration (Beijing). 2021;1(2):20210011.doi: 10.1002/exp.20210011

 

  1. Liu A, Yang G, Zhao Y, et al. Bone‐targeted hybrid extracellular vesicles for alveolar bone regeneration. Interdiscipl Med. 2025:e20240126. doi: 10.1002/INMD.20240126

 

  1. Li Y, Zhang H, Jiang Y, Yang J, Cai D, Bai X. The application of extracellular vesicles in orthopedic diseases. Interdiscipl Med. 2024;2(3):e20230055. doi: 10.1002/INMD.20230055

 

  1. Zhang Y, Li D, Liu Y, et al. 3D-bioprinted anisotropic bicellular living hydrogels boost osteochondral regeneration via reconstruction of cartilage-bone interface. Innovation (Camb). 2024;5(1):100542. doi: 10.1016/j.xinn.2023.100542

 

  1. Hu Q, Pan X, Liang Y, et al. Comparative efficacy and safety of bisphosphonate therapy for bone loss in individuals after middle age: A systematic review and network meta-analysis. Nano TransMed. 2022;1(1):e9130003. doi: 10.26599/NTM.2022.9130003

 

  1. Rossini M, Bianchi G, Di Munno O, et al. Determinants of adherence to osteoporosis treatment in clinical practice. Osteoporos Int. 2006;17(6):914-921. doi: 10.1007/s00198-006-0073-6

 

  1. Wang Y, Sun L, Kan T, et al. Hypermethylation of Bmp2 and Fgfr2 promoter regions in bone marrow mesenchymal stem cells leads to bone loss in prematurely aged mice. Aging Dis. 2024;16(2):1149-1168. doi: 10.14336/AD.2024.0324

 

  1. Yu YL, Martens DS, An DW, et al. Osteoporosis in relation to a bone-related aging biomarker derived from the urinary proteomic profile: A population study. Aging Dis. 2024;16(1):633. doi: 10.14336/AD.2024.0303

 

  1. Bai L, Song P, Su J. Bioactive elements manipulate bone regeneration. Biomater Transl. 2023;4(4):248. doi: 10.12336/biomatertransl.2023.04.005

 

  1. Zhang P, Qin Q, Cao X, et al. Hydrogel microspheres for bone regeneration through regulation of the regenerative microenvironment. Biomater Transl. 2024;5(3):205-235. doi: 10.12336/biomatertransl.2024.03.002

 

  1. Salazar VS, Gamer LW, Rosen V. BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol. 2016;12(4):203-221. doi: 10.1038/nrendo.2016.12

 

  1. Zhou N, Li Q, Lin X, et al. BMP2 induces chondrogenic differentiation, osteogenic differentiation and endochondral ossification in stem cells. Cell Tissue Res. 2016;366(1):101-111. doi: 10.1007/s00441-016-2403-0

 

  1. Rahman M, Peng XL, Zhao XH, et al. 3D bioactive cell-free-scaffolds for in-vitro/in-vivo capture and directed osteoinduction of stem cells for bone tissue regeneration. Bioact Mater. 2021;6(11):4083-4095. doi: 10.1016/j.bioactmat.2021.01.013

 

  1. Rosen V. BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev. 2009;20(5-6):475-480. doi: 10.1016/j.cytogfr.2009.10.018

 

  1. Rodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development. 2006;133(16):3231-3244. doi: 10.1242/dev.02480

 

  1. Albert SG, Reddy S. Clinical evaluation of cost efficacy of drugs for treatment of osteoporosis: A meta-analysis. Endocr Pract. 2017;23(7):841-856. doi: 10.4158/EP161678.RA

 

  1. Liang W, Zhou C, Liu X, et al. Current status of nano-embedded growth factors and stem cells delivery to bone for targeted repair and regeneration. J Orthop Translat. 2025;50:257-273. doi: 10.1016/j.jot.2024.12.006

 

  1. Fu Z, Qiu H, Xu Y, Tan C, Wang H. Biological effects, properties and tissue engineering applications of polyhydroxyalkanoates: A review. Int J Biol Macromol. 2025;293:139281. doi: 10.1016/j.ijbiomac.2024.139281

 

  1. Ding YW, Li Y, Zhang ZW, Dao JW, Wei DX. Hydrogel forming microneedles loaded with VEGF and Ritlecitinib/polyhydroxyalkanoates nanoparticles for mini-invasive androgenetic alopecia treatment. Bioactive Mater. 2024;38:95-108. doi: 10.1016/j.bioactmat.2024.04.020

 

  1. Ren ZW, Wang ZY, Ding YW, et al. Polyhydroxyalkanoates: The natural biopolyester for future medical innovations. Biomater Sci. 2023;11(18):6013-6034. doi: 10.1039/d3bm01043k

 

  1. Xu T, Huang XY, Dao JW, Xiao D, Wei DX. Synthetic biology for medical biomaterials. Interdiscipl Med. 2025;3:e20240087. doi: 10.1002/INMD.20240087

 

  1. Luo Q, Zou F, Yang D, et al. The production and characterization of an aminolyzed polyhydroxyalkanoate membrane and its cytocompatibility with osteoblasts. Molecules. 2025;30(4):950. doi: 10.3390/molecules30040950

 

  1. Zhao Y, Zou B, Shi Z, Wu Q, Chen GQ. The effect of 3-hydroxybutyrate on the in vitro differentiation of murine osteoblast MC3T3-E1 and in vivo bone formation in ovariectomized rats. Biomaterials. 2007;28(20):3063-3073. doi: 10.1016/j.biomaterials.2007.03.003

 

  1. Cao Q, Zhang J, Liu H, Wu Q, Chen J, Chen GQ. The mechanism of anti-osteoporosis effects of 3-hydroxybutyrate and derivatives under simulated microgravity. Biomaterials. 2014;35(28):8273-8283. doi: 10.1016/j.biomaterials.2014.06.020

 

  1. Wei DX, Chen Z. Current situation and challenge of exogenous 3-hydroxybutyrate derived from polyhydroxyalkanoates for elderly health: A review. Int J Biol Macromol. 2025;285:138328. doi: 10.1016/j.ijbiomac.2024.138328

 

  1. Esmaeili M, Ghasemi S, Shariati L, Karbasi S. Evaluating the osteogenic properties of polyhydroxybutyrate-zein/multiwalled carbon nanotubes (MWCNTs) electrospun composite scaffold for bone tissue engineering applications. Int J Biol Macromol. 2024;276(Pt 2):133829. doi: 10.1016/j.ijbiomac.2024.133829

 

  1. Wei DX, Dao JW, Chen GQ. A Micro-Ark for cells: Highly open porous polyhydroxyalkanoate microspheres as injectable scaffolds for tissue regeneration. Adv Mater. 2018;30(31):e1802273. doi: 10.1002/adma.201802273

 

  1. Li J, Zhang X, Peng ZX, et al. Metabolically activated energetic materials mediate cellular anabolism for bone regeneration. Trends Biotechnol. 2024;42(12):1745-1776. doi: 10.1016/j.tibtech.2024.08.002

 

  1. Hu YJ, Wei X, Zhao W, Liu YS, Chen GQ. Biocompatibility of poly(3- hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) with bone marrow mesenchymal stem cells. Acta Biomater. 2009;5(4):1115-1125. doi: 10.1016/j.actbio.2008.09.021

 

  1. Su Z, Li P, Wu B, et al. PHBVHHx scaffolds loaded with umbilical cord-derived mesenchymal stem cells or hepatocyte-like cells differentiated from these cells for liver tissue engineering. Mater Sci Eng C Mater Biol Appl. 2014;45:374-382. doi: 10.1016/j.msec.2014.09.022

 

  1. Hu J, Wang M, Xiao X, et al. A novel long-acting azathioprine polyhydroxyalkanoate nanoparticle enhances treatment efficacy for systemic lupus erythematosus with reduced side effects. Nanoscale. 2020;12(19):10799-10808. doi: 10.1039/d0nr01308k

 

  1. Wei DX, Cai D, Tan Y, et al. Poly (3-hydroxybutyrate-co-3- hydroxyvalerate-co-3-hydroxyhexanoate)-based microspheres as a sustained platform for Huperzine A delivery for Alzheimer’s disease therapy. Int J Biol Macromol. 2024;282:136582. doi: 10.1016/j.ijbiomac.2024.136582

 

  1. Huang XY, Zhou XX, Yang H, et al. Directed osteogenic differentiation of human bone marrow mesenchymal stem cells via sustained release of BMP4 from PBVHx-based nanoparticles. Int J Biol Macromol. 2024;265:130649. doi: 10.1016/j.ijbiomac.2024.130649

 

  1. Zhou XX, Huang XY, Zhang M, et al. A BMP6 supply system based on PBVHx nanoparticles promotes the osteogenic differentiation of human stem cells in simulated microgravity. Int J Biol Macromol. 2025;319:145444. doi: 10.1016/j.ijbiomac.2025.145444

 

  1. Mi CH, Qi XY, Ding YW, Zhou J, Dao JW, Wei DX. Recent advances of medical polyhydroxyalkanoates in musculoskeletal system. Biomater Transl. 2023;4(4):234-247.doi: 10.12336/biomatertransl.2023.04.004

 

  1. Zhao XH, Peng XL, Gong HL, Wei DX. Osteogenic differentiation system based on biopolymer nanoparticles for stem cells in simulated microgravity. Biomed Mater. 2021;16(4):044102. doi: 10.1088/1748-605X/abe9d1

 

  1. Cai H, Han XJ, Luo ZR, et al. Pretreatment with Notoginsenoside R1 enhances the efficacy of neonatal rat mesenchymal stem cell transplantation in model of myocardial infarction through regulating PI3K/Akt/FoxO1 signaling pathways. Stem Cell Res Ther. 2024;15(1):419. doi: 10.1186/s13287-024-04039-x

 

  1. Li H, Liu B, Ao H, et al. Soybean lecithin stabilizes disulfiram nanosuspensions with a high drug-loading content: remarkably improved antitumor efficacy. J Nanobiotechnology. 2020;18(1):4. doi: 10.1186/s12951-019-0565-0

 

  1. Xue Y, Li Y, Zhang D, Xu W, Ning C, Han D. Calcium phosphate silicate microspheres with soybean lecithin as a sustained-release bone morphogenetic protein-delivery system for bone tissue regeneration. ACS Biomater Sci Eng. 2023;9(5):2596-2607. doi: 10.1021/acsbiomaterials.2c01065

 

  1. Chen R, Yu J, Gong HL, et al. An easy long‐acting BMP7 release system based on biopolymer nanoparticles for inducing osteogenic differentiation of adipose mesenchymal stem cells. J Tissue Eng Regen Med. 2020;14(7):964-972. doi: 10.1002/term.3070

 

  1. Wei D, Qiao R, Dao J, et al. Soybean lecithin-mediated nanoporous PLGA microspheres with highly entrapped and controlled released BMP-2 as a stem cell platform. Small. 2018;14(22):e1800063. doi: 10.1002/smll.201800063

 

  1. Yang Z, Li X, Gan X, et al. Hydrogel armed with Bmp2 mRNA-enriched exosomes enhances bone regeneration. J Nanobiotechnol. 2023;21(1):119. doi: 10.1186/s12951-023-01871-w

 

  1. Sriram M, Priya S, Katti DS. Polyhydroxybutyrate-based osteoinductive mineralized electrospun structures that mimic components and tissue interfaces of the osteon for bone tissue engineering. Biofabrication. 2024;16(2):025036. doi: 10.1088/1758-5090/ad331a

 

  1. Lin X, Patil S, Gao YG, Qian A. The bone extracellular matrix in bone formation and regeneration. Front Pharmacol. 2020;11:757. doi: 10.3389/fphar.2020.00757

 

  1. Fendi F, Abdullah B, Suryani S, Usman AN, Tahir D. Development and application of hydroxyapatite-based scaffolds for bone tissue regeneration: A systematic literature review. Bone. 2024;183:117075. doi: 10.1016/j.bone.2024.117075

 

  1. Bystrov V, Bystrova A, Dekhtyar Y. HAP nanoparticle and substrate surface electrical potential towards bone cells adhesion: Recent results review. Adv Colloid Interface Sci. 2017;249:213-219. doi: 10.1016/j.cis.2017.05.002

 

  1. Wan B, Ruan Y, Shen C, et al. Biomimetically precipitated nanocrystalline hydroxyapatite. Nano TransMed. 2022;1(2-4):e9130008. doi: 10.26599/NTM.2022.9130008

 

  1. Makris K, Mousa C, Cavalier E. Alkaline phosphatases: Biochemistry, functions, and measurement. Calcif Tissue Int. 2023;112(2):233-242. doi: 10.1007/s00223-022-01048-x

 

  1. Lin Z, Chen Z, Chen Y, et al. Hydrogenated silicene nanosheet functionalized scaffold enables immuno‐bone remodeling. Exploration (Beijing). 2023;3(4):20220149. doi: 10.1002/exp.20220149

 

  1. Li H, Fan J, Fan L, et al. MiRNA-10b reciprocally stimulates osteogenesis and inhibits adipogenesis partly through the TGF-β/SMAD2 signaling pathway. Aging Dis. 2018;9(6):1058. doi: 10.14336/AD.2018.0214

 

  1. Sharma G, Lee YH, Kim JC, Sharma AR, Lee SS. Bone regeneration enhanced by quercetin-capped selenium nanoparticles via miR206/ Connexin43, WNT, and BMP signaling pathways. Aging Dis. 2026;17(1):2.

 

  1. Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov. 2024;10(1):71. doi: 10.1038/s41421-024-00689-6

 

  1. Jin F, Liu M, Zhang D, Wang X. Translational perspective on bone-derived cytokines in inter-organ communications. Innovation (Camb). 2023;4(1):100365. doi: 10.1016/j.xinn.2022.100365
Share
Back to top