An exploration into the principles and theoretical progress of fracture treatment based on the mechanism of fracture healing
Fractures are a common category of diseases in the field of orthopaedics with a high incidence in archaeologically obtained bones. These diseases may occur in various human activities. In the context of technological advancement, the annual incidence of fractures is increasing due to traffic accidents, sports injuries, and ageing. Besides, the classification of fracture diseases is also changing, making them one of the main orthopaedic diseases that affect the quality of life of patients and national medical expenditure. There are some basic principles in the treatment of fractures, and the understanding of the causes, types, and pathogenesis of fractures is constantly improved with technological development. Hence, there are sustained efforts to explore fracture treatment methods and examine even widely popular concepts, such as Arbeitsgemeinschaft für Osteosynthesis (AO) and biological osteosynthesis (BO) principles. However, nonhealing fractures, fracture infections, and other treatment problems can still not be eliminated based on these concepts. In addition, some new perspectives on the treatment principles of fractures have been proposed by surgeons based on their clinical experience. In this paper, the latest research results on fracture healing are summarised, and our views and opinions on the application of AO or other new concepts in fracture treatment are also elucidated. During the investigation of the advantages and disadvantages of fracture treatment concepts, the shortcomings of current fracture treatment strategies or theories are also reviewed. These findings may provide clinicians with theoretical support for fracture treatment and inspire scholars to delve into fracture treatment principles.
- Zhu Z, Zhang T, Shen Y, Shan PF. The burden of fracture in China from 1990 to 2019. Arch Osteoporos. 2023;19:1. doi: 10.1007/s11657-023-01353-4
- Bertelli HD, Aquino JLB, Leandro-Merhi VA. Lower 25-hydroxyvitamin D (25OHD) levels, diabetes and age are associated with foot and ankle fracture treatment complications. Arch Endocrinol Metab. 2023;67:e220020. doi: 10.20945/2359-4292-2022-0020
- Fang XY, Xu HW, Chen H, et al. Association between poor nutritional status and increased risk for subsequent vertebral fracture in elderly people with percutaneous vertebroplasty. Clin Interv Aging. 2022;17:1503-1512. doi: 10.2147/CIA.S376916
- Fu R, Liu Y, Song F, et al. Effects of dynamization timing and degree on bone healing of different fracture types. J Orthop Res. 2023;41:2394-2404. doi: 10.1002/jor.25583
- Merrell LA, Adams JC, Kingery MT, Ganta A, Konda SR, Egol KA. Fracture related infection (FRI) of the upper extremity correlates with poor bone and soft tissue healing. Eur J Orthop Surg Traumatol. 2024;34:1201-1207. doi: 10.1007/s00590-023-03750-4
- Ruzicka A, Kaiser P, Schmidle G, Benedikt S, Kastenberger T, Arora R. Conservative treatment of distal radial fractures. Oper Orthop Traumatol. 2023;35:319-328. doi: 10.1007/s00064-023-00820-y
- Warutkar VB, Samal S, Zade RJ. Matrix rhythm therapy (MRT) along with conventional physiotherapy proves to be beneficial in a patient with post-operative knee stiffness in case of tibia-fibula fracture: A case report. Cureus. 2023;15 e45384. doi: 10.7759/cureus.45384
- Kong D, Fan X, Song C, Wu M, Wu L, Yang T, Zhang Y. A comparative analysis of between percutaneous cannulated screw fixation and traditional plate internal fixation in treatment of Sanders II and III calcaneal fractures. J Foot Ankle Surg. 2024;63 327-332. doi: 10.1053/j.jfas.2023.12.004
- Gilbert WB Jr., Jitendra Desai M. Intramedullary nailing of forearm fractures. Hand Clin. 2023;39 551-559. doi: 10.1016/j.hcl.2023.05.012
- Steppe L, Megafu M, Tschaffon-Müller MEA, Ignatius A, Haffner- Luntzer M. Fracture healing research: Recent insights. Bone Rep. 2023;19:101686. doi: 10.1016/j.bonr.2023.101686
- Capobianco CA, Hankenson KD, Knights AJ. Temporal dynamics of immune-stromal cell interactions in fracture healing. Front Immunol. 2024;15:1352819. doi: 10.3389/fimmu.2024.1352819
- Cavalcanti Kussmaul A, Kuehlein T, Langer MF, Ayache A, Unglaub F. The treatment of closed finger and metacarpal fractures. Dtsch Arztebl Int. 2023;120:855-862. doi: 10.3238/arztebl.m2023.0226
- Smith SR, Santucci E, Lamberti PM. Treatment of fourth and fifth carpometacarpal fracture-dislocations in punching injuries with motion-sparing hamate fixation spring plates: “Rabbit ears” plating. Tech Hand Up Extrem Surg. 2023;27:239-242.
- Inoue S, Li C, Hatakeyama J, Jiang H, Kuroki H, Moriyama H. Higher-intensity ultrasound accelerates fracture healing via mechanosensitive ion channel Piezo1. Bone. 2023;177:116916. doi: 10.1016/j.bone.2023.116916
- Chinipardaz Z, Yuan G, Liu M, Graves DT, Yang S. Diabetes impairs fracture healing through Foxo1 mediated disruption of ciliogenesis. Cell Death Discov. 2023;9:299. doi: 10.1038/s41420-023-01562-3
- Jahn D, Knapstein PR, Otto E, et al. Increased β(2)-adrenergic signaling promotes fracture healing through callus neovascularization in mice. Sci Transl Med. 2024;16:eadk9129.
- Liu R, Jiao YR, Huang M, et al. Mechanosensitive protein polycystin-1 promotes periosteal stem/progenitor cells osteochondral differentiation in fracture healing. Theranostics. 2024;14:2544-2559. doi: 10.7150/thno.93269
- Dong Z, Hu B, Wang S, et al. LncRNA MAGI2-AS3 promotes fracture healing through downregulation of miR-223-3p. J Orthop Surg Res. 2024;19:370. doi: 10.1186/s13018-024-04850-5
- Saito K, Toyoda H, Okada M, et al. Fracture healing on non-union fracture model promoted by non-thermal atmospheric-pressure plasma. PLoS One. 2024;19:e0298086. doi: 10.1371/journal.pone.0298086
- Xiao B, Liu Y, Chandrasiri I, Adjei-Sowah E, Mereness J, Yan M, et al. Bone-targeted nanoparticle drug delivery system-mediated macrophage modulation for enhanced fracture healing. Small. 2024;20:e2305336.
- Xiang S, Zhao L, Tang C, et al. Icariin inhibits osteoblast ferroptosis via Nrf2/HO-1 signaling and enhances healing of osteoporotic fractures. Eur J Pharmacol. 2024;965:176244. doi: 10.1016/j.ejphar.2023.176244
- Dejea H, Raina DB, Silva Barreto I, et al. Multi-scale characterization of the spatio-temporal interplay between elemental composition, mineral deposition and remodelling in bone fracture healing. Acta Biomater. 2023;167:135-146. doi: 10.1016/j.actbio.2023.06.031
- Yoo JI, Park SY, Kim DY, et al. Effectiveness and usefulness of bone turnover marker in osteoporosis patients: a multicenter study in Korea. J Bone Metab. 2023;30:311-317. doi: 10.11005/jbm.2023.30.4.311
- Fitzpatrick D, Lannon R, Laird E, et al. The association between proton pump inhibitors and hyperparathyroidism: A potential mechanism for increased fracture-results of a large observational cohort study. Osteoporos Int. 2023;34:1917-1926. doi: 10.1007/s00198-023-06867-8
- Ding D, Zhu H, Zheng M, Kang C. Effect of platelet content on occurrence and prognosis of distal radius fracture. Medicine (Baltimore). 2023;102:e35043. doi: 10.1097/MD.0000000000035043
- Suzuyama H, Tsubata T, Kitajima S, et al. Simulation of ultrasonically induced electrical potentials in bone. J Acoust Soc Am. 2023;154:1315-1323.
- Wen J, Cai D, Gao W, et al. Osteoimmunomodulatory nanoparticles for bone regeneration. Nanomaterials (Basel). 2023;13:692. doi: 10.3390/nano13040692
- Wang Z, Li L, Gu W, Mao Y, Wang T. Resveratrol reverses osteogenic decline of bone marrow mesenchymal stem cells via upregulation of YAP expression in inflammatory environment. Stem Cells Dev. 2021;30:1202-1214. doi: 10.1089/scd.2021.0195
- Zhao SJ, Kong FQ, Jie J, et al. Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/ AKT/GSK3β/β-catenin pathway. Theranostics. 2020;10:17-35. doi: 10.7150/thno.36930
- Shen Z, Dong W, Chen Z, et al. Total flavonoids of Rhizoma Drynariae enhances CD31hi Emcnhi vessel formation and subsequent bone regeneration in rat models of distraction osteogenesis by activating PDGF-BB/VEGF/RUNX2/OSX signaling axis. Int J Mol Med. 2022;50:112. doi: 10.3892/ijmm.2022.5167
- Chen J, Yang Y. LncRNA HAGLR absorbing miR-214-3p promotes BMP2 expression and improves tibial fractures. Am J Transl Res. 2021;13:11065-11080.
- Liu W, Li L, Rong Y, et al. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater. 2020;103:196-212. doi: 10.1016/j.actbio.2019.12.020
- Augat P, Hollensteiner M, Von Rüden C. The role of mechanical stimulation in the enhancement of bone healing. Injury. 2021;52(Suppl 2):S78-S83.doi: 10.1016/j.injury.2020.10.009
- Blouin S, Khani F, Messmer P, et al. Vitamin C Deficiency deteriorates bone microarchitecture and mineralization in a sex-specific manner in adult mice. J Bone Miner Res. 2023;38:1509-1520. doi: 10.1002/jbmr.4889
- Wang L, You X, Lotinun S, Zhang L, Wu N, Zou W. Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk. Nat Commun. 2020;11:282. doi: 10.1038/s41467-019-14146-6
- Travascio F, Buller LT, Milne E, Latta L. Mechanical performance and implications on bone healing of different screw configurations for plate fixation of diaphyseal tibia fractures: A computational study. Eur J Orthop Surg Traumatol. 2021;31:121-130. doi: 10.1007/s00590-020-02749-5
- Minoia A, Dalle Carbonare L, Schwamborn JC, Bolognin S, Valenti MT. Bone tissue and the nervous system: What do they have in common? Cells. 2022;12:51. doi: 10.3390/cells12010051
- McCauley J, Bitsaktsis C, Cottrell J. Macrophage subtype and cytokine expression characterization during the acute inflammatory phase of mouse bone fracture repair. J Orthop Res. 2020;38:1693-1702. doi: 10.1002/jor.24603
- Perrin S, Julien A, De Lageneste OD, Abou-Khalil R, Colnot C. Mouse periosteal cell culture, in vitro differentiation, and in vivo transplantationin tibial fractures. Bio Protoc. 2021;11:e4107. doi: 10.21769/BioProtoc.4107
- Solheim K, Vaage S. Fracture treatment using the AO method. Clinical experiences. Tidsskr Nor Laegeforen. 1971;91:2470-2477. doi: 10.1016/s0020-1383(72)80011-1
- Zhong G, Teng L, Li HB, Huang FG, Xiang Z, Cen SQ. Surgical treatment of internal fixation failure of femoral peritrochanteric fracture. Orthop Surg. 2021;13:1739-1747. doi: 10.1111/os.13110
- Moriarty TF, Metsemakers WJ, Morgenstern M, et al. Fracture-related infection. Nat Rev Dis Primers. 2022;8:67. doi: 10.1038/s41572-022-00396-0
- Wildemann B, Ignatius A, Leung F, et al. Non-union bone fractures. Nat Rev Dis Primers. 2021;7:57. doi: 10.1038/s41572-021-00289-8
- Song SF, Yao LL, Li ZM, et al. Treating low extremity comminuted fracture with biological osteosynthesis. Zhongguo Jiaoxing Waike Zazhi. 2006;14:565-567.
- Cheng YZ, Bai JG, Wang CL, Wen JM, Lian ZH. Clinical practice and intelligent thinking of minimally invasive and external fixation techniques for fractures based on Chinese Osteosynthesis theory. Zhongguo Gu Shang. 2023;36:795-797.
- Kang QL, Zhang CC, Xu SG. Treatment of the fractures with shape memory alloy (SMA). Zhongguo Gu Shang. 2003;16:670-671.
- Malisorn S. The current concept and evidence-based practice in the base of the first metacarpal bone fracture. Cureus. 2024;16:e51600. doi: 10.7759/cureus.51600
- Morisaki T, Fukuhara T, Ehara H, Kataoka H, Koyama S, Fujiwara K. A novel concept for surgical management of a traumatic comminuted cricoid fracture. Ear Nose Throat J. 2024;103:NP128-NP131. doi: 10.1177/01455613211040579
- Frima H, Van Heijl M, Michelitsch C, Van der Meijden O, Beeres FJP, Houwert RM, et al. Clavicle fractures in adults; current concepts. Eur J Trauma Emerg Surg. 2020;46:519-529. doi: 10.1007/s00068-019-01122-4
- Fischer H, Maleitzke T, Eder C, Ahmad S, Stöckle U, Braun KF. Management of proximal femur fractures in the elderly: Current concepts and treatment options. Eur J Med Res. 2021;26:86. doi: 10.1186/s40001-021-00556-0
- Sander AL, Leiblein M, Sommer K, Marzi I, Schneidmüller D, Frank J. Epidemiology and treatment of distal radius fractures: Current concept based on fracture severity and not on age. Eur J Trauma Emerg Surg. 2020;46:585-590. doi: 10.1007/s00068-018-1023-7
- Kremer L, Frank J, Lustenberger T, Marzi I, Sander AL. Epidemiology and treatment of phalangeal fractures: Conservative treatment is the predominant therapeutic concept. Eur J Trauma Emerg Surg. 2022;48:567-571. doi: 10.1007/s00068-020-01397-y
- Liau GZQ, Lin HY, Wang Y, Nistala KRY, Cheong CK, Hui JHP. Pediatric femoral shaft fracture: An age-based treatment algorithm. Indian J Orthop. 2021;55:55-67. doi: 10.1007/s43465-020-00281-6
- Ma Z, Zhan J, Zhu N, et al. A comparative study of the clinical efficacy of supination-adduction type II ankle fracture surgery based on the medial pilon fracture concept versus the ankle fracture concept. BMC Musculoskelet Disord. 2021;22:936. doi: 10.1186/s12891-021-04818-0
- Tanner MC, Hagelskamp S, Vlachopoulos W, et al. Non-union treatment based on the “diamond concept” is a clinically effective and safe treatment option in older adults. Clin Interv Aging. 2020;15:1221-1230. doi: 10.2147/CIA.S241936
- Tao S, Wang Q, Shi Y, et al. Analysis of the clinical effect of the concept of “shoulder preservation” in the treatment of proximal humeral fractures: A retrospective cohort study of 66 patients. Ann Palliat Med. 2022;11:1077-1084.
- Liu H, Deng L, Zhang JX, et al. Effect of different anesthesia and puncture methods of percutaneous kyphoplasty on more than 90-year-old osteoporotic vertebral fracture: Advantages of the ERAS concept. Int J Clin Pract. 2022;2022:7770214. doi: 10.1155/2022/7770214
- Binh LN, Nhu NT, Vy VPT, et al. Multi-class deep learning model for detecting pediatric distal forearm fractures based on the AO/OTA classification. J Imaging Inform Med. 2024;37:725-733. doi: 10.1007/s10278-024-00968-4
- Kweh BTS, Tee JW, Oner FC, et al. Evolution of the AO spine sacral and pelvic classification system: A systematic review. J Neurosurg Spine. 2022;37:914-926. doi: 10.3171/2022.5.SPINE211468
- Huitema JM, Van der Gaast N, Jaarsma RL, Doornberg JN, Edwards MJR, Hermans E. The effect of addition of 2DCT scans and 3DCT scans for the classification of tibial plateau fractures: A systematic review. Eur J Trauma Emerg Surg. 2024;50:71-79. doi: 10.1007/s00068-023-02344-3
- Yao P, Liu Y, Shan L, et al. Intra- and inter-observer reliability assessment of widely used classifications and the “ten-segment classification” of tibial plateau fractures. Knee. 2022;35:149-156. doi: 10.1016/j.knee.2022.03.002
- Heifner JJ, McIver ND, Salas C, Mercer DM. A volar locking plate with fossa specific fixation provides comparable stability between articular and nonarticular cadaveric models of distal radius fracture. Hand (N Y). 2022;19:15589447221122825. doi: 10.1177/15589447221122825
- Wang Y, Zhou Q, Wang Z, Wang W, Shen H, Lu H. Micromotion-based balanced drilling technology to increase near cortical strain. BMC Surg. 2022;22:387. doi: 10.1186/s12893-022-01816-4
- Yao X, Hu M, Fu Y, et al. Proximal avulsion of five ligaments and revised diagonal principle in tibial plateau fractures. Injury. 2022;53:3494-3501. doi: 10.1016/j.injury.2022.07.018
- Marintschev I, Hofmann GO. Minimally invasive bilateral fixed angle locking fixation of the dorsal pelvic ring: Clinical proof of concept and preliminary treatment results. Eur J Trauma Emerg Surg. 2023;49:1873-1882. doi: 10.1007/s00068-023-02259-z
- Wegmann K, Harbrecht A, Hackl M, Uschok S, Leschinger T, Müller LP. Inducing life-like distal radius fractures in human cadaveric specimens: A tool for enhanced surgical training. Arch Orthop Trauma Surg. 2020;140:425-432. doi: 10.1007/s00402-019-03313-5
- Li S, Zhang YQ, Wang GH, Li K, Wang J, Ni M. Melone’s concept revisited in comminuted distal radius fractures: The three-dimensional CT mapping. J Orthop Surg Res. 2020;15:222. doi: 10.1186/s13018-020-01739-x
- Nag P, Chanda SA. Preclinical model of post-surgery secondary bone healing for subtrochanteric femoral fracture based on fuzzy interpretations. PLoS One. 2022;17:e0271061. doi: 10.1371/journal.pone.0271061
- Hodgson H, Giannoudis PV, Howard A. Fracture non-union; what are the current perceived challenges among clinicians? Injury. 2022;53:3865-3866. doi: 10.1016/j.injury.2022.10.029
- Van de Wall BJM, Theus C, Link BC, et al. Absolute or relative stability in plate fixation for simple humeral shaft fractures. Injury. 2019;50:1986-1991. doi: 10.1016/j.injury.2019.08.004
- Rellán I, Gallucci GL, Donndorff AG, et al. Time until union in absolute vs. relative stability MIPO plating in simple humeral shaft fractures. Eur J Orthop Surg Traumatol. 2022;32:191-197. doi: 10.1007/s00590-021-02920-6
- Panteli M, Vun JS, Pountos I, Howard AJ, Jones E, Giannoudis PV. Biological and molecular profile of fracture non-union tissue: A systematic review and an update on current insights. J Cell Mol Med. 2022;26:601-623. doi: 10.1111/jcmm.17096
- Basirom I, Daud R, Ijaz MF, Rojan MA, Basaruddin KS. Stability analysis of plate-screw fixation for femoral midshaft fractures. Materials (Basel). 2023;16:5958. doi: 10.3390/ma16175958
- Shah NV, Hayes WT, Wang H, et al. A pilot biomechanical study comparing a novel intramedullary Nail/Plate construct to standard dual-plate fixation of intra-articular C2.3 distal humerus fractures. Injury. 2020;51:2148-2157. doi: 10.1016/j.injury.2020.06.034
- Shamrock A, Leary S, Kohler J, et al. In situ straightening of a bent tibiofemoral intramedullary nail: Case report and review of the literature. Iowa Orthop J. 2021;41:167-170.
- Jabara JT, Only AJ, Paull TZ, Wise KL, Swiontkowski MF, Nguyen MP. Arthroscopically assisted percutaneous screw fixation of tibial plateau fractures. JBJS Essent Surg Tech. 2022;12:e21.00026. doi: 10.2106/JBJS.ST.21.00026
